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ABSTRACT

A global damage detection algorithm for bridge-like Structures is proposed. This
method provides the capability of determining the reduction in both stiffness and damping
parameters of the structural elements. It is assumed the mass of the Structural elements is not
affected by the damages, which is a reasonable assumption for bridge-like structures. The
proposed method uses the state space representation of the structural dynamics to make the
diagnosis of the structural integrity. Given that the state space representation of any system
is not unique, the damage detection procedure is developed for the physical coordinates of
the state space representation. A transformation method to get any arbitrary state space
representation into the physical coordinates is also developed.

The feasibility of the proposed damage detection algorithm is verified on a numerical

example as well as on a simulated three-bar truss structure with three degrees-of-freedom.
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I. INTRODUCTION

Even when structures are carefully designed for load carrying capabilities, they
may be prone to damage during their service life. Undetected damage may grow to the
point where it may cause catastrophic failure in which many lives may be lost. In order to
assure the integrity of a structure, it should be submitted to periodical inspection.
Inspecting large structures requires lot of time and qualified personnel; making inspection
a very expensive and time consuming procedure. Additionally, there are faults which are
impossible to detect with the naked eye because they are at the center of the structural
elements, or because the inspector does not have access to that particular structural region.
These are some of the reasons why in recent years, a considerably amount of effort had
been put into the résearch and development of damage detection algorithms (DDA) for
structures.

Due to the interest in aerospace studies and the development of a space station, a
lot of attenﬁon has been given to the space structures which, in general, are lightly
damped. For this reason, most of the global damage detection algorithms (GDDA)
developed for these kind of structures do not address the damping reduction of the
structural elements. By other hand, in bridge-like structures the damping of the structural
elements constitutes a very important factor of the structural response. This is why a

GDDA for bridge-like structures should address the damping reduction of the structural

elements. Another characteristic of the bridge-like structures is that damage does not

considerably affect the mass of the damaged structural element.
The presence of damage in a structure causes it to behave different to its healthy

counterpart. As the structure accumulates damage, certain structural characteristics, such



as natural frequencies and mode shapes, change. These changes are the consequence of
changes in structural parameters such as mass, stiffness and damping.

A GDDA should not only be able to determine that a structure has been damaged,
but it should also determine which structural elements have been damaged and the damage
| severity. In order to make a diagnosis of the structural integrity, a GDDA requires
knowledge of the structural response to external forces; the structural response can be
observed in either time domain or in the frequency domain. A GDDA based on the time
domain provides for on-line application of the algorithm; while a GDDA based on
frequency domain data can only be applied off-line. Having a method which can be
applied on-line avoids the deadtime of the structure; in other words, the structural integrity
can be tested while the structure is kept on its regular use.

A model of the structure is required in order to detect and classify the damages in
the structure. The finite element method for truss structures with bar elements will be
reviewed. In addition, two techniques for obtaining a state space representation of the
structure from its structural response will also be reviewed. The first of these procedures
generates a state space representation based on the sweep sine frequency response of the
structure. The second system identification is the Eigensystem Realization Algorithm, in
which a discrete time state space representation is obtained using the Markov parameters
of the structures. In order to estimate the structural Markov parameters, a neural network
based procedure is reviewed.

A GDDA for bridge-like structures is proposed in this thesis. The proposed
algorithm provides for determining stiffness and/or damping reduction of the structural

elements, while assuming that their mass does not vary due to damage. This GDDA is



based on the state space representation of the structure, which is identified from time
domain data. Considering that the state space representation for a system is not unique,
this method has been developed using the state space representation corresponding to the
physical coordinates of the structure. The state space representation of a structure
determined using an appropriate system identification method contains an arbitrary set of
states. Therefore, a linear transformation is required to transform the identified arbitrary
state space representation into the structural physical coordinate. A method to determine
this linear transformation is also proposed. In order to validate the proposed GDDA, it has
been applied on a numerical example as well as on a simulated three-bar-truss structure

with three degrees-of-freedom (DOF).



II. LITERATURE SURVEY

In recent years, the smart structure community has been interested in the
research and development of algorithms for damage detection in structures. Safety
and inspection costs are the two main reasons for this special interest. In addition,
the development of a space station has greatly contributed to the development of
damage detection algorithms (DDA). The objective of a DDA is not only to indicate
when a structure has been damaged; in addition, it should also indicate which section
or element has been damaged, what kind of damage has occurred and the extent of
the damage.

Based on what kind of damage a particular DDA identifies and what kind of
data it uses, it maﬁr be classified into several classes of algorithms. Some algorithms
are classified as global damage detection algorithms. The objective of a global
damage detection algorithm (GDDA) is to verify the integrity of a whole structure,
and narrow down the inspection problem to specific regions or elements. Once a
particular region has been identified as damaged, local DDA can be applied for
further investigation of the fault. Some DDA are based on the frequency response of
the structure, while others are based on the time domain response. Algorithms based
on time domain data are suitable for real time damage detection; while algorithms
based on frequency domain response may be applied off-line.

Every DDA requires information about the structural response to external
forces. A common approach for damage detection is to compare a mathematical
model of the damaged structure versus the mathematical model of the healthy

structure. The mathematical model for the damaged structure is usually obtained



from the structural response, while a mathematical model for the healthy structure
comes for the finite element model (FEM). Other GDDA have been developed using
artificial intelligence technology, such as pattern recognition and neural networks;
several GDDAs of these categories will be reviewed.

The global DDA proposed in this thesis identifies, classifies and estimates the
structural damage by comparing the physical coordinate state space model of the
damaged structure versus the corresponding state space model of the healthy
structure. Also, two other methods with similar approaches will be discussed in
detail. These methods are the Best Achievable Eigenvector method and the method
proposed by Chen and Garba. In addition to the reviewed GDDAs, one local DDA
will be reviewed. This algorithm identifies faults by monitoring the local electrical

impedance using piezoelectric patches.

A. DAMAGE DETECTION USING MODAL RESPONSE

In recent years, many researchersl!>34! have investigated the use of the
structural modal response for the assessment of the structural integrity. Due to the
development of a space station, most of this effort has been dedicated to the damage
detection for space structures, which in general, are lightly damped. Therefore, many
of the developed DDA address the reduction in stiffness and/or mass of the structural
elements neglecting their damping.

Every DDA based on the structural modal response requires information on the
structural response to external forces, structural identification and some method to
compare the obtained structural model to the model for the healthy structure. Smith

et al.13), describes the general steps involved in any DDA which uses modal test for



damage assessment; these steps are summarized in Figure 1. In Figure 1, each solid
vertical line represents a process which may be performed by different algorithms.
In this figure, modal data refers to natural frequencies and mode shapes, which are
obtained using a model identification algorithm. For space structures, the original
mode] usually consist of the global mass and stiffness matrices; for other structures,
the damping matrix may also be required. Some DDA may require normalized mode
shapes. Very often, measurements are made at only a few degrees-of-freedom

(DOF), necessitating expansion of the identified mode shapes[5 1

Structure
Tes‘ing

Measurements of
Dynamics Response

Modal Identification
Y

Modal Data:
Natural frequencies and
Mode Shapes

Original Model
Structural Identification

and Laocation

Damage Location

Figure 1. Steps for a DDA using structural modal response



Several sets of algorithms may be chosen to perform the steps shown in
Figure 1. Smith presented the obtained results using one particular set of algorithms
applied to an 8-bay truss structure. The importance of preserving the load path
during the structural identification is emphasized. An iterative stiffness matrix
identification algorithm was used for structure identification purpose. This algorithm
produces a minimally changed model to match the modal data while preserving the
load paths of the original structure. A method that uses graph theory for a matrix
was used for damage location®. The zero-nonzero pattern of a matrix is represented
by a graph for that matrix. The node and the percentage of edge adjustment are
stored in two vectors, producing two lists. One list represents the adjustment to the
elements of the diagonal, while the other represents the adjustment to the non-zero
elements of the off-diagonal. These two lists are filtered with two threshold values
for damage detection, resulting on a subgraph for the damaged structure. The
resulting subgraph indicates the damaged structural elements.

In the next two sections, two methods for damage detection which use modal
response will be reviewed in details. These two DDAs are the Chen and Garba
method and the Best Achievable Eigenvector technique.

1. Method by Chen and Garba The Chen and Garba method!!] assumes that the
structure does not contain any damping. Additionally, it assumes that the mass
distribution of the structure is not affected by the damage, or that it changes by a
known quantity. This method only provides for changes in the stiffness parameters.

The existence of damage is determined by a relatively large change in natural

frequencies and mode shapes. The authors show that the kinetic energy distribution



at each DOF for each mode is equal to the potential energy distribution for that

particular mode:

JJi

Potential Energy kinetic Energy

(01, TK1{03, = ml-z{M--sz} 1)

where {¢}; is the mode shape associated to the ith mode, ®; is the ith mode natural
frequency, [ ]d represents a diagonal matrix, and j refers to the jth position of the
vector or matrix. Note that the kinetic energy distribution can be calculated using the
measured npatural frequencies, ®;, and measured mode shapes, ¢;. The potential
energy distribution of the DOF associated with a damaged structural element will be
different from its undamaged counterpart. Considering this, the locations of the
damage are determined by finding the DOFs for which the kinetic energies are
different from their values for the healthy structure.

In order to determine the extent of the damage, the connectivity matrix for each
mode is used. The connectivity matrix is determined by expanding the expression
[Akij]{q)}i (where the matrix [Akij] is determined from the finite element model of
the structure), and expressing it as [C]i{Akij}' Finally, the extent of the damage,
Ak; L is determined by solving a constrained minimization problem of the stiffness
change norm.

The governing equation for the structural dynamics can be written as

[M]{x} + [C]{z} + [K{x} = {f(D}. @
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Given that the space structures are lightly damped, the damping matrix [C] will be
zero, or very close to zero. Therefore, the corresponding homogenous equation for

Equation (2), for a lightly damped structure may be formulated

[M]{x} +[K){x} =0 . ®3)

This global damage detection algorithm (GDDA) assumes that the mass
distribution of the structure, matrix [M], is not affected by a damage, or that it
changes by a known quantity. The solution for the differential equation, Equation
(3), can be expressed as

{x} = {0};sinot. )

Substituting the solution to Equation (3) as expressed in Equation (4), the following

relationship is obtained:

[K1{0},- 0. [M1{0}; = 0. )

From Equation (5) it can be seen that any mass and/or stiffness loss will be reflected
in the structural natural frequencies and mode shapes. Therefore, a deviation from
the original natural frequencies and mode shapes will indicate damage occurrance.
Note that changes in some physical parameters will affect some structural modes, and
not necessarily all the structural modes. Pre-multiplying Equation (5) by a diagonal

matrix, [¢]i , which contains the i™" mode shape as its diagonal, and considering the

matrix [M] to be diagonal (lumped mass matrix),

(01°1K1{0},; = oL 1017 M1°{0}, = m?{ijcﬁ,}. ®)
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The left hand side of Equation (6) represents potential energy distribution, while the
right hand side represents kinetic energy distribution. Therefore, Equation (6) shows
that the kinetic energy distribution for the i mode is equal to its potential energy.
Note that the kinetic energy for the i mode can be ‘computed once the natural
frequency, ®;, and the mode shape, {¢}i , had been determined from the measured
vibration response of the structure. The location of the damage can be found by
idenﬁfying kinetic energy values of DOF which are different from the healthy

structure.
Once a structure has been damaged, its stiffness matrix can be expressed as

[K] = [Ky]+[AK], %)

where the delta matrix, [AK], is due to the damage; and it contains variables for the

stiffness variations of the structural elements. Substituting Equation (7) in Equation
(5),
[AK1{0}; = (] [M]-[Ko]){0},. ®)
The left hand side of Equation (8) can be manipulated, in such a way that
[AKN{0}; = [CI{Ak;}, ©

where [C], is referred as the connectivity matrix for the i mode. Substituting

Equation (9) in Equation (8),
[C]i{Akij} = {y}i (10)

where

¥} = (0 [M]-[KgD{o};. )
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Note that {y}, is know for all the pairs of natural frequencies, ®,, and mode shape,

{0}, . Equation (10) can be augmented for N modes, so that,

,

[cl, O
{Akij}Mxl =91 .. ]
[CInlvwm {»},

(12)

JINx1

where N is the number of equations, and M is the number of stiffness variations

Akij‘ In order to solve for Akij’ the pseudo-inverse should be used for all the three

possible cases:

M>N:
-1

{ak) = (1 qener’y {vy 13)

M<N:

-1

{ak = (er'ten ey’ {r (%

M =N
{Ak} = [C17 {7} as)

2. Best Achievable Eigenvector Method The Best Achievable Eigenvector (BAE)
method!?! also assumes no damping in the structure, and considers the damage to be
a reduction in stiffness and/or mass. It also assumes the mode shapes at the finite
element degrees-of-freedom (DOF) are available either by expanding the mode
shapes at the test DOF or by measuring the entire finite element DOF.

In this study, the situation of insufficient mode shapes is not addressed. In this

method, possible damage locations are identified using the BAE concept. The BAEs
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are defined by the undamaged analytical model and the measured natural frequencies.
The Euclidean distance between the BAEs and the measured mode shapes are used to
determine possible damage locations. Once the possible damaged structural elements
have been identified, the extent of the damage is determined using constrained
eigenstructure assignment. In the case of multiple damage and/or multiple possible
damage locations, an iterative procedure is suggested.

The equation of motion for an n-DOF structural dynamic system without

damping can be expressed as
Mi+Kx = f(¢) (16)
The eigenvalue equation associated with equation (16) is
K® = MDA 17)
where: @ is an n X r system modal matrix, and A is a diagonal matrix containing the
n eigenvalues. Each structural element contributes to the overall system mass and
stiffness, M and K respectively; so that these matrices can be expressed as the

summation of each structural element contribution, i.e.

p
K= Y K;, (18)
i=1
and
q
M= Y M,. (19)
i=1

Once a structural member is damaged, its stiffness and/or damping parameter is
reduced by a certain percent, which are called reduction factors. Therefore, the

structural matrices for a damaged structure can be expressed as



13

p
Kd = Ku+ Y aiKi 20)

i=1
and

q
MdzMu-*-'zlbiMi’ 21

=

where the subscript d refers to the damaged structure, a; is the stiffness reduction
factor for the i structural member and b; is the mass reduction factor for the i™
structural member. The reduction factors a; and b; can take any value in the range

[-1,0]. The reduction factor vector, s, is defined to be

51 aq
S a
s=| Pl=|7P]. (22)
sp+1 bl
Sp+al  |P4]

Considering the expressions for the matrices K ; and M ; as given in Equations (20)
and (21), together with r number of tested modes, the eigenvalue equation, can be re-

arranged as

P q
S akK®,- 3 MDA =M ®A-K O, (23)

i=1 i=1

where the subscript ¢ denotes a tested quantity. With the following definitions,

E.= co.Mu-—K (24)

A. = E; K. (25)



14
and
Bij = —-OJIZJ.EJ_.IMZ., | (26)
Equation (23) can be expressed as
P q
iglaiAij¢tj+i§1biBij¢tj = q)tj. 27)

Assuming there is only one structural member damaged, say element k, and
that it only affects the j’h mode, it is desired to verify the influence of the reduction
factor s, on the j’h mode. With this single damage scenario, it will be found that the

element d ki of the matrix D,

dll .va dlj e dlr
D= |dpy o dyj oo dy |, (28)
d,) e dy e dy)

will be zero or very close to zero. In the definition of matrix D, e is the number of
structural elements that could possibly have caused the damage, and dkj is the
Euclidean distance between the measured modes and the best achievable eigenvector
(BAE) defined by the undamaged analytical model and the measured natural

frequencies; so that,

4y = foy-oi]. @)

where

a PN
by = ijijT%- (30)
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In equation (30), ]:kj is the matrix ij without the zero columns; and ij is defined

to be,

Akj’k= 1,....p

L.= (31)

k .
/ B(k_p)j,k=p+1,...,p+q

This method for determining which structural element has been damaged, is based on
the fact that, if the damage has been caused by the stiffness or mass loss of element
k, and this damage is reflected iq the /" mode, then the measured mode shape must
be a linear combination of the columns of the matrix ij. In other words, the
measured mode ¢ 1 must reside on the span of the matrix ij célumn vectors.

Once the matrix D is determined, different possible damaged members are
identified by verifying which elements of the matrix D are zero or very close to zero.
Using these possible damaged members, p number of stiffness elements and g

number of mass elements, equation (27) can be re-written as

§ a;A;+ % b;B; = R, (32)
i=1 i=1
where
A =ko, (33)
B, = -M® A, (34)
and
R = Muq)tAt_Kuq)t' (35)

Equating each column of equation (32), and re-arranging the obtained equation,
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Ls =r : (36)
where
) T
5= [al ne ag 191 b(?:l , 37
11 - 4p1 B11 - Byt
i = (A12 - Ap2 Bra - By 38)
A1y - Apy By, ... By
and
T nt
r= ; 39
& K] 3

where Aij and B,—j represent the 7 column of the matrices fli and Bi, respectively,

and RJ. is the jth column of the matrix R. The reduction factor vector, §, can be

solved from equation (36),

§=LTr, (40)
where LT is the pseudo-inverse of 1.

If there are multiple possible damaged elements, an iterative process is
suggested:
Step 1: the single must probable damage member is selected examining
matrix D.
Step 2: the reduction factor, §, for that member is determined using

Equation (36).
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Step 3: a “new undamaged” stiffness or mass matrix is computed
considering the reduction factor computed in Step 2. For example:
Ku' =K +5.K,.

Step 4: compute the natural frequencies using the “new undamaged” matrix
from Step 3.

Step 5: if the natural frequencies are very close to the measured ones, then
all the damaged elements had been properly identified; if not, a new
matrix D is computed, and the process is repeated.

From the discussed procedure, it can be seen that the BAE involves two sub-
procedures, the first one to determine which structural elements have been damaged,

and a second one to determine the respective reduction factor.

B. NEURAL NETWORKS FOR STRUCTURAL DAMAGE DETECTION

Many researchers!® 782101 have investigated the application of neural networks
to the structural damage detection problem. Most of the studies follow the same idea
or procedure: a measurable mechanical property is identified as the network input,
and the location(s) and/or extent of the damage as the output of the network. The
network architecture is varied until one is found which is able to learn the input-
output relationship. Then, the network is tested with some cases for which the
network was not trained; this is to determine the quality of the generalization
achieved by the trained network. Consider three different studies in which neural
networks have been applied for damage detection.

1. Neural Networks for Damage Detection in a Three Story Building Wu et al.[lo],

considered a study in which a neural network is used to identify the damage location
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and its extent in a simulated-three story building. In this study, the columns of each
story were considered to be a structural element; and the damage was modeled as a
reduction in the stiffness of one of the structural elements, ignoring their damping.
The building was excited at the base using data from several earthquakes. The
acceleration at the top floor was Fourier transformed and discretized into 200
intervals (in the range of O - 20 Hz). This discretized Fourier-transformed data
constituted the input to the network. The training data set consisted of the no-
damage case, 50% and 70% reduction of stiffness for each of the three structural
elements (only one at a time); and each of these cases for six different earthquakes,
for a total of 42 different damage cases. A network architecture that learned the
training set included the following: input layer of 200 nodes, one hidden layer of 10
nodes, and the output layer of three nodes. The value at the output nodes represent
the stiffness percent still present at the structural element. When the network was
tested with the untrained-for case of 60% reduction in each of the three structural
elements (one at a time), it was found that the network only identified properly the
damage at the third floor. This level of generalization is unacceptable. Therefore,
the authors proceeded to add an extra accelerometer at the second floor. This forced
a modification of the architecture, which was modified to have two input sets of 200
nodes each, two hidden layers and an output layer with 3 nodes. After training the
network, and testing it with the untrained-for case of 60% stiffness reduction at each
of the structural elements (one at a time), it was found that the network was able to
identify the location and extent of the damage at the third and first floors. It was still

unable to identify properly the damage at the second floor.
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This particular study demonstrated that a neural network could be used for
damage detection, but many questions remain on the table, such as: how much
information will the network need in order to learn the training cases? From which
locations should this information come? How many damage cases should the
network learn before reaching an accurate level of generalization? These questions
are in addition to the still unsolved enigma of determining a network that will learn a
particular input-output relationship. Additionally, it should be noted, that the
untrained-for case that was considered in this paper was in the range for which the
network was trained. If it was not on that particular range, the level of generalization

may not be applicable.

2. Neural Networks for Damage Detection in Mass-Damper-Spring Systems Tsou

and Shen!®) used different neural networks to detect reduction in the stiffness of the
springs in two different systems. The first considered system was a mass-damper-
spring system with 3-DOF, while the second one was an mass-spring system with 8-
DOF which had closely-spaced natural frequencies. For the 3-DOF system, a three
layer backpropagation neural network was able to identify single spring damages
within 3.5 relative percentage error if the stiffness reduction was within the range
considered during the network training, which was from 10 to 90 percent reduction
with intervals of 10 percents. The input of the neural network were the changes in
the natural frequencies once the damage was considered; and the output of the
network represented the stiffness of the three springs. For the cases of multiple

damages, a three layer backpropagation neural network was also used for damage
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detection purpose. The obtained results using the trained network were also
excellent; the identified damage was within 5.5% the actual stiffness variation.

For the considered 8-DOF system, which had closely-spaced natural
frequencies, the required neural network architecture was very complex. For this
problem, the neural architecture was divided into three sub-networks. The first sub-
network consisted of a single layer which had the 8-DOF modal data as inputs, and
the weights were the elements of the system mass and stiffness matrices. The
resulting output vector was a signed vector, d;, which represented a transformed
eigenvector. This vector, d;, was the input to the second sub-network; which had
three layers and was pre-trained to identify which of the 14 springs had their stiffness
parameter reduced. Finally, the third sub-network had the output of both first and
second sub-networks as it inputs. The output of the last sub-network represented the
estimation of the damages. This network was able to identify the considered

multiple damages within 3.2% of the actual damage if the stiffness reduction were in

the range used during training. If the reduction was out of this range, a maximum of

35% error was experienced.

The obtained results indicate the feasibility of using neural networks for
damage detection. And the need for a wide range of damage cases during the
network training was demonstrated.

3. Vibration Signature Analysis Using Artificial Neural Networks The questions of
number of sensors and optimal sensor placement were addressed by Barail®. In this
work, the results of using a multilayered neural network for the identification of

stiffness reduction on a simulated bridge-like planar truss structure with 21-DOF
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were presented. The training data was obtained by simulating the FEM of the
structure under different damages scenarios. The damages were considered to be a
reduction of stiffness, which were modeled as reduction in the structural elements
cross-sectional area. The external forces were considered to be the effect of a single
load moving along the bridge at a constant speed. The moving forces were converted
into stationary time dependent forces. On simulation, the amount of available
vertical displacement sensors was considered to be 1, 3 and 5. The simulated
measurements were normalized to have values between 0 and 1; the normalization
was done to improve the convergence during training.

The neural network architecture that learned the training set had 4 layers of
neurons: the input layer, 2 hidden layers and the output layer. The two hidden layers
had 21 neurons each. The output layer had 21 neurons corresponding to the cross-
sectional area of the respective 21 structural elements. The number of neurons at the
input layer varied depending on how many vertical displacement sensors were
considered. For the cases with one, three and five sensors the input layer respectively
had 69, 72 and 74 neurons; 69 neurons received the vibration signature data and the
other inputs were used to code which sensor the data was coming from.

After training the neural network with 16 different damage scenarios, the
generalization of the network was tested using 5 cases not included on the training
set. It was found that the best damage detection was achieved considering only one
sensor, placed on a suitable location. The single sensor was considered to be at
different DOF, but the best results were obtained with the single sensor placed at the

vertical DOF at the center of the bridge span, at the bottom of the structure.
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The fact that the network was able to properly identify the location and extent
of the damage considering only one single sensor was the main result of this work.
The high level of structural symmetry together with a noise-free environment may

had contributed to the obtained results.

C. DAMAGE DETECTION USING PATTERN RECOGNITION

Tang et al.l11], presents how the statistical approach of pattern recognition
could be used for damage detection on a composite beam. As shown in Figure 2,
using the statistical approach of pattern recognition for damage detection involves
four general steps: pattern measurements, feature extraction, learning and
classification. The pattern measurements come from the structural sensors. The
objective of the feature extraction is to reduce the number of observation spaces into
a manageable size of important feature spaces, so that only the discriminatory
information is retained. The feature extraction should optimally retain a minimum
number of dimensions while maintaining the maximum probability of correct
classification. The features are defined for each application based on physical
considerations. The definition of features can take place in either time or frequency
domain. Once the dimensions have been reduced, the features are ordered by ranking
them. This rank indicates which features are more important for classification
purpose. In order to perform the ranking the nearest neighbor rule is suggested.
Knowledge of the correct output for several damage scenarios is required for the
learning procedure. This information may come from the FEM of the structure. The
knowledge acquired in the learning step will be used by the classification procedure.

Data that belong to different classes will reside in different regions in the feature



23

space. Ideally, the classifier will divide the feature space into mutually exclusive

regions.

Test/Field Data ¢

Sensor Location-——————1
- Simulated Dynamics
Geometry & Material —#FEM-#r Response at Different -

Feature Extraction

Degradation/Damage _[’ Levels of Degrad.ation and Learning
Distribution Patterns
System Development
System Application
Y
Sensor Location————— Real Time Prediction of

Inspection System Material Degradation

Dynamics Response] -

Figure 2. Schematic for damage detection using pattern recognition

In this particular study, three classifiers were considered for the classification of
different characteristics; the three classifiers were the Single Gaussian, Fisher Linear
Discriminant and the Nearest Neighbor Criteria, and the characteristics that were
considered are summarized in Table I, together with the classification options. The
feature considered for each characteristic case were different: “Mean Value of the
Normalized Enveloped Function” for Damage Status classification; “Mean Value of
the Normalized Enveloped Function”, “Variance of the Normalized Waveform
Amplitude Values” and “Local Fall Variance Between Peak and 25% level” for the

classification of Degree of Modulus Degradation; “Difference between 50% level and
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25% level (Waveform Cumulétive Distribution)” for D‘amage Zone classification; and
“Fraction of total power between lower 50% level and peak”, “Local rise variance
between 50% level and peak spectrum” and “Globally fall time from peak to 50%
level” for the classification of Damage Zone Sizes. In all the cases the Nearest
Neighbor Criteria classifier produced the minimum error percentage of
classiﬁcétion, but some of these percentages were quite high. The minimum error,
2%, was obtained for the case of damage status and mechanism classification. On the
other hand, a higher error was obtained in the classification of the damaged zone

sizes into 4 classes, in which a 48% error was experienced.

Table I Characteristics considered for classification

Characteristic Classes

Damage Status and | 2: Undamaged / Modulus Degradation
Mechanism 3: Undamaged / Modulus Degradation/Delamination

Degree of Modulus | 3: Undamaged / <10% degradation / >10% degradation
Degradation 5: Undamaged / 5% / 10% / 20% / >30%

Damage Zone 2:07-37/37-5"
Location

Damage Zone Size | 2: <2inches / 23inches
4: Undamaged / 17/2” /3" /1 4

Some of the obtained classification errors were relatively high, but this study
was performed with a small data base for the learning step. With a more extensive

data base, better results will be expected.
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D. LOCAL DAMAGE DETECTION USING STRUCTURAL IMPEDANCE

In certain applications it would be beneficial to monitor the integrity of very
critical local areas. This should happen in such a way that the monitoring of the local
area is not affected by changes in the rest of the structure. This kind of damage
detection will be ideal for critical areas such as bolts and junctions.

Chaudhry et al.l12] presents a method to perform local damage detection using
piezoelectric (PZT) patches to detect changes in structural impedance at high
frequencies. In this study the PZT patches were used as both sensors and actuators.
The actuation/sensing capabilities of a PZT patch are limited to a small region close
to the patch location, in particular when used at high frequencies. Therefore, the
changes in structural impedance that may be detected using a PZT patch at high
frequency, corresponds to changes in the local area. At high frequencies, typically
greater that 50 KHz, the structural response is dominated by local modes and
daméges like micro-cracks, loose connections and delamination.

Piezoelectric material exhibits the direct and converse effect. The direct effect
is the phenomenon of electric charge generation when the material is subjected to a
mechanical stress; and, the converse effect is when a mechanical strain is generated
due to an applied electric field. Therefore, PZT patches provide a mean for coupling
the electrical and mechanical impedance. The electrical impedance is defined as the
ratio of the applied voltage and the resulting current; while the mechanical
impedance is the ratio of the applied force and the resulting velocity. The electrical
impedance can be measured using an impedance analyzer, which is commercially

available. Any change in the local impedance signatures indicates a variation in the
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local area structural integrity. This impedance signature idea was applied to detect
when a pair of bolts were getting loosen. Considering a 100% damage to be the
smallest possible turn on a local area bolt, all local alterations were identified to be
greater than 55%. Meanwhile, any change outside the local area resulted in an
identified damage of less than 7%.

This kind of approach will allow to detect very small changes, such as micro-
cracks and loose bolts. The only problem with the suggested technique is that the
electrical properties of the PZT are easily affected by changes in temperature, which

may lead to a false diagnosis.
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III. MODELING OF BRIDGE-LIKE STRUCTURES

In this section, different methods to obtain a state space model of a bridge-like
structure will be discussed. Bridge-like structures are mainly designed and
constructed using trusses. The most common method for modeling a structure,
including truss structures, is the finite element method. This modeling technique
uses the physical parameters of the structural elements as well as the interconnection
of the structural elements to determine a mathematical model of the structure. The
mass and stiffness matrices of the equation of motion for an n-DOF is obtained from
the finite element method. If the structure is lightly damped, the damping may be
neglected. For bridge-like structures, in which the damping constitutes a very
important factor of the structural response, the damping can be determined from the
structural response. Once the equation of motion is known, a state space
representation can be determined in which the states represent the displacement and
velocity of the structural DOF. This particular state space representation is known as
the physical coordinate state space representation. From the state space
representation the natural frequencies and mode shapes can be determined. A
procedure for determining the natural frequencies and mode shapes will be presented.

In addition to the finite element method, two other methods for obtaining a
state space mathematical model of a structure will be reviewed. These two other
methods are used to determine a state space representation model of a structure from
measured data; in other words, these methods are system identification methods. The
first system identification procedure provides for obtaining the state space

representation from the swept sine frequency response of the structure. The other
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system identification method that will be discussed is the Eigensystem Realization
Algorithm (ERA). This system identification method determines a discrete state
space representation for the structure from experimental data. In order to estimate a
discrete state space representation using the ERA, the Markov parameters (MPs) of
the structure should be determined first. A method for determining the MPs of a
structure using a feedforward neural network will be reviewed.

Finally, a FEM of a laboratory-scale bridge-like structure will be presented, as
well as some of the difficulties encountered with the obtained mathematical model of

the structure.

A. FINITE EI ELEMENT MODEL OF A TRUSS STRUCTURE

Any structure can be modeled using the finite element method. The
mathematical model obtained using the finite element method is known as finite
element model (FEM). Most of the bridge-like structures are design and constructed
using trusses. Therefore, the procedure for modeling a truss structure using the finite
element method will be reviewed!!3].

The finite element method is used to model the structural stiffness as well as
the structural mass. By doing this, the stiffness matrix and the mass matrix of the
equation of motion, Equation (2), are obtained. The structural damping is not
modeled by the finite element method. The finite element method divides the
structure into a number of structural elements. The way in which these structural
elements are interconnected as well as some physical parameters of tﬁe structural

elements are used to determine the contribution of each structural element to the
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global stiffness and mass matrices of the structure. The point where two or more
structural elements are joined together is called a node.

For other kind of structures, other than trusses, the FEM can be improved by
dividing each structural element into smaller structural elements. This is not the case
for truss structures, in which further subdivision of a finite element does not add to
the accuracy of the FEM.

The finite element method can be applied to both 2-D (planar) and 3-D
structures. In both cases, a global coordinate system is defined in order to determine
the mathematical model of the structure; global coordinates are defined for each
structural node. The finite element method presented in the following sections
considers each structural element behaves as a bar; i.e., the structural element
experience longitudinal vibration. The structural elements are assumed to vibrate
only along the element axis; while the structure can vibrate in béth X and Y directions
for a 2-D structure, and in the X, Y and Z directions for a 3-D structure.

1. Finite Element Model of Planar (2-D) Structures The best way to review the
finite element method for truss structures is using a simple example. Therefore,
consider a three elements planar truss structure with two degrees-of-freedom (DOF)
as shown in Figure 3. All the structural elements have cross sectional A and Young’s
modulus E. The global stiffness and mass matrices are the result of the individual
structural elements contribution. Note from Figure 3 that both structural elements
and structural nodes have been identified. The degrees of freedom had been
identified by dx or dy depending on the direction, and the subscript makes reference

to the structural node.
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dy; dys
At» dxy L 5 + > dx3
’ Y
Dllys T__»
dx; X

Figure 3. Three elements planar truss structure with 2-DOF

Modeling each structural element as a bar, the contribution of each structural

element, K y , to the global stiffness matrix is determined by the matrix

- dxg dy; dx, dy, -
2 2

c (8,) c¢s(8;,) —c(6)) —cs(ei) dx;

2 2
Ki — ‘i& Cs(ei) s (ei) _Cs(ei) -5 (ei) dy; 1)

i |_c%(8,) —cs(8,) ¢*(8,) es(8,) dx

-cs(0;) -—s2((-)l.) cs(8)) sz(ei) dy,

where the subscript i makes reference to the i™ structural element, c(ei)'and s(9 i)
respectively represents the cosine and sine of 6;, 0, is the angle between the global
coordinate X-axis and the axis along the structural element, and the row and column
references are dx; = displacement in the X-direction at the starting structural node,
dy, = displacement in the Y-direction at the starting structural node, dx, =
displacement in the X-direction at the ending structural node and dy, = displacement
in the Y-direction at the ending structural‘node. Once the matrix Ki has been

determined for all the structural elements, the global stiffness matrix can be
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assembled. All the matrices elements with the same column and row references are
added together and placed in the respective location at the global matrices; so that,

the stiffness matrix for the structure shown in Figure 3 is

. axy dy; dx, dy, dxz dys
Ky +Ko Ko+ Ky, Ko Ky K3 Ky |®
Ki,+K1 Ky +Ky K Ko Ky Ky |
© - K Ky Ky 4Ky Kpp+ Ky Kl K4 dxz. “2)
K4 K;4 K12+K§4 Kéz*'K?m Ky Ky | »
K13 K K13 Ky K33 + Ky K;4+K§4 s
R ) U

From Figure 3 it can be observed that the displacements dx;, dy;, dx; and dy; are
equal to zero. Therefore, their corresponding columns and rows are to be deleted; so
that, the global stiffness matrix is

dxz dyz
1 2 1 .2
K3+ Ky Kag+ Kayldxs

12 1 .2
34+ K3y Kgg+ Kyyldys

‘K = (43)

K

The global mass matrix can be determined using the so called consistent mass
method or the lumped mass method. The consistent mass method follows a similar
procedure to the reviewed procedure for the stiffness; with the difference that each

] ] i . .
structural element contribution, M , is determined from
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2
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(44)

. . . i
Using the lumped mass matrix procedure, each structural element contribution, M,

is determined from

d'xS dxe

dy, d
10 0 0]%s
i _ PiAiLilo 1 0 oldys
2 (001 0|dx
000 1|dy,

M

(45)

Once the individual structural elements contribution are determined, either by using

the consistent or lumped mass method, the global mass matrix is assembled adding

all the matrices elements with the same columns and rows references. Doing this, the

global mass matrix for the structure shown in Figure 3 is

_ dy dy) dx; dy; dxz dys
dx M%1+Mil M%z“’M?z Mi’3 M?4 M%3 M%4
D1 M%z””i’z M§2+M;2 Mgs M;4 M§3 M§4
dx M?s Mg?, M%1+M23 M}2+M§4 M%s M}4
RE M9154 M;4 M}2+Mg4 M;2+Mi4 M;_z K;4
@3 M%s M%s Mi3 Mé3 M;3+M§3 M;4+M§4
3 M%4 M§4 Mi4 M;4 M§4+M§4 Mi4+M4214_

Applying the boundary conditions, the global mass matrix is

.(46)
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dx3 dys

1,2 1 .2
Mo+ Moy Mo, + Mo, |93
p oo |33 a3 Maa T Mg an

M;4 +M§4 M4114+Mi4 dys
Using the lumped mass matrix method provides less accurate result than using
the consistent mass method, but it provides a simple way to add extra masses.
attached to the structure, such as actuators. This flexibility, is due to the fact that the
lumped mass method assign to each structural node half of the mass of each
structural element connected to it. So that, if an extra mass is present in the
structure, its mass will be assigned to the closest structural node.

2. Finite Element Model of 3-D Structures The discussed procedure for a planar

structure can be extended for a 3-D structure. On a 3-D structure, there are up-to 3
possible DOF at each structural node; a 3-D global coordinate is defined at each
structural element. The contribution of each structural element, Kl, to the global

stiffness matrix is determined using the matrix

2 2

C"i cxlcyl c lczl -C x, —C xicyl —cxlczl dx,

c ¢ C2y. c,c, —C.C —czy —C dy
XY POy XY A

2 2
Ki AE, Cxiczi cyiczi €z =€ xiczi —C yiczi —C z dz, )

Li 2 2 d ’
—C x, —cxicyl —cxiczl Cx;, ¢ xicyl szczz Xe
—C_¢ —c2y —C c.c Czy. c. c_ldy

% PVt % EooYpyee

- ¢, — c_ ' —czz c.c, ¢ ¢ czz. dz
BRI R R L
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where Bxi, Gyi and Gzi are the respective angles between the i structural element
and the global coordinate X-, Y- and Z-axis. Once the individual contribution matrix,
K i, has been determined for all the structural elements, the global stiffness matrix
may be assembled using the same procedure used for the 2-D structure; in which, all
the matrices elements with the same row and column references are added together
and placed in their respective matrix location. After assembling the global stiffness
matrix, the boundary conditions are considered to reduce the order of the global
stiffness matrix eliminating the row and column corresponding to the fixed DOF.

For a 3-D structure, there is also the option of using the consistent mass
method or the lumped mass method. In order to determine the contribution of each

structural element to the global mass matrix using the consistent matrix method, the

following matrix is considered

_ dxs dys dz, dx, dy, dz, _
2 2
2¢7x. 2¢c.c. 2c.c. ¢ x. c.c. c.c. lax
B A R S (I
2 2 d
2¢.c, 2c7y 2¢c.¢c, c ¢ cy. ¢ ¢ Is
X Vi LYy %D NS
2 Uz
A
iP; AiLz 2cxic i 2cyiczi 2c z cxiczi cyiczi ¢z
c2 c.¢C c.c 2c2 2c_c. 2c.c e
ity Txy iy Ty
2 2 dy
c.c cyv. c.c. 2c.c. 2cy. 2c.c_|7¢
*i Vi Vi Ty Ty i Ty
2. 2 2 202, 2
cxiczi cyiczi ¢’z 2 xiczi cyiczi A 2

Using the lumped mass method the individual contribution to the global mass matrix

is determined by the matrix
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dx, dz; dy,
 dyg dx, dz,
100 0 0 0|dx
01000 0dy
Wi = Pifitilo0 1000/ (50)
2 1000100}
0000 10|dy.
00000 1]dz

Using the matrices Mi for all the structural elements, the global mass matrix is
assembled using the same procedure used for the stiffness matrix.

The individual contribution matrices, K ‘ and M i, are determined using some
physical properties of each structural element as well as the location of the nodes to
which each structural element is attached. Modeling each structural element as bar,
the required physical properties for modeling a structure using the finite element
method are the elements cross sectional area, Young’s modulus and density.
Considering a structural element to be attached to the structural nodes a and b; note
that, the same global mass and stiffness matrices will be obtained if the structural

element is consider to go either from a to b, or from b to a.

3. Compl utation of Natural Frequencies and Mode Shapes =~ Having modeled the

mass and stiffness of a lightly damped structure, the structural response to external
forces can be determined using the equation of motion for an n-DOF structure
Mi+Kx = f. (51)
where x is the vector of the DOF displacement, X is the vector of the DOF
acceleration and f is the vector of external forces. From Equation (51), the physical

coordinate state space representation is found to be
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fl = { _(1) I} *1 +|:O_1:|f<:>x=Ax+Bf. (52)
) -M "K 0f|* M
The structural natural frequencies and mode shapes can be obtained by solving the
algebraic eigenvalue problem13

Az = Az, z#0. (53)
The obtained 2n eigenvalues, kg , of the matrix A are related to the structural natural
frequencies by the equation

A g = tjo,, (54)

where g = 1,2,...,2n,i=1,2,..,n,j = J——l and ©; is the natural frequency for
the i mode. And the obtained 2n eigenvectors, Z 2’ of the matrix A are related to

the structural mode shapes by
z, = | "' (55)

where u; are the structural mode shapes.
For the case of an n-DOF damped structure, the equation of motion is given
by
MGg+Dg+Kq = f(1). (56)

Expressing Equation (56) in the physical coordinate state space representation,

i 0 I ||x| |0
=1 L] L fex = axenr (57)
4 |-M K -M Dl|*] M

Due to the damping, the eigenvalues and eigenvectors of the matrix A, Kg and z g

respectively, may be complex; causing the mode shapes, u ;» to be complex. The
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physical interpretation of the complex eigenvalues 2A . is the same as the

interpretation for an underdamped single DOF, so that

, 2
kg=~§imii]mi 1-¢, (58)

where ©; is the underdamped natural frequency for the i mode, and Ci is the modal
damping ratio of the i’ mode. Considering kg = ag + ng, the underdamped natural

frequencies and modal damping ratios are determined to be
(59)

and

S A (60)
o+

o0 N
=
o0 N

In terms of complex mode shapes, each element describes the relative motion
magnitude and phase of the DOF associated with that element when the structure is

excited at the corresponding natural frequency.

B. DERIVATION OF STATE SPACE MODELS FROM EXPERIMENTAL DATA

A state space representation of a structure can be obtained using the swept
sine frequency response of the structure, or by using the Eigensystem Realization
Algorithm (ERA)['). These two methods of system identification will be reviewed
in the following sections.

1. State Space Representation From Frequency Response The frequency response
of a structure can be determined using the so called swept sine method. From this

test a magnitude and a phase plot are obtained, which represent the structural
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frequency response. These plots can be curve fitted by placing poles and zeros, in
such a way that the frequency response of the generated transfer function is as close
as possible to the obtained from the swept sine test. One transfer function needs to
be determined for each input-output relationship. Once this has been achieved, the
generated transfer function can be used to generate a state space representation of the
structure by using any of the standard procedures for éanonical state space
representation from transfer function, such as the controller canonical form.

Consider the generated transfer function G(s) to be

blsn— +b2sn_2+... +b"
G(s) = - (61)
s +a1sn_ +..+a
n
Then the state space controller canonical form representation is
41 T4 - T4y !
1 0 ... 0O 0
*=lo 1 0 ..|*H| (62)
0 ... 0 0
| O 0 1]
y = [bl by ... bn]x, (63)

where x is the state vector, f is the input vector, and y is the measurement of the
states.

If the state space representation is to be used in damage detection, it should
correspond to the physical coordinate representation. The controller canonical form
does not satisfy this condition. Therefore, a linear transformation needs to be found

which transforms the controller canonical form into the physical coordinate
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representation. A procedure to transform any arbitrary state space representation into

the physical coordinate will be proposed in Section IV.B.

2. State Space Representation Using The Eigensystem Realization Algorithm The

ERA method has been successfully applied in the modeling of smart structures(1>-16],

This method determines a minimal order discrete-time state space representation of a
system from its Markov parameters (MPs).

Knowing the structural response to a uniformly distributed random input, the
MPs of the structure can be determined by using an observer formulation!!”! and/or
by using a feedforward neural network!18l. The feedforward neural network method
is preferred[lsl over the observer formulation because training a feedforward neural
network is less computationally intensive than the computations required for the
observer formulation; and, more accurate estimation of the MPs is achieved when
dealing with noisy experimental data (due to the noise rejection properties of neural

networks).

a. Markov parameters calculation using neural networks An N order linear

discrete-time system described by the state space representation
x(k+1) = Ax(k) + Bu(k) (64)
y(k) = Cx(k) (65)

can also be described in terms of its MPs,

yk) = [CAOB cA'B ... CAN_II% Jeavon (66)

where CA" ™~ '8 for n = 1,2, ..., N are the system MPs; and Z_l[u(k)] represents

past inputs to the system
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u(k)
-1 -
Z k)] = | #k-D . (67)
uk—-N+1)|Nx1
A mapping of the structural-input to the structural-output (response) can be obtained

using a multilayered feedforward neural network, as shown in Figure 4.

- _ M
u(k) ™ v (II? v z (;2,) Z 0
System _
put |3 y y(®)
v r r r >
1 - System
z°; : Output
v T T
w1 w2 T w3
}_“g/“etr (PxN) (QxP) MxQ)
Hidden Layers Output Layer

Figure 4. Neural network architecture for Markov parameter calculation

Once the network has been trained, it will map the input Z_l[u(k)] into the

output

(k) = ExWyxT(W, x T (W, x Z L [u)])) (68)

where W, W, and W, are the weighting matrices of the network, and £ is a
constant. Considering that post-training the neurons can be assumed to operate in the

linear range of the nonlinear activation function, y(k) can be expressed as
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y(k) = §><W3><W2xW1. (69)

Comparing equations (3) and (6), it can be observed that for a proper choice of N
(number of past inputs of the system, the MPs are proportional to the product of the

network weighting matrices. This can be expressed as

EXW3xWyx Wy = [CAOB ca'p .. CAN'IB]- (70)
Therefore, a multilayered feedforward neural network can be used to determine the
MPs of a structure.

b. Eigensystem Realization Algorithm The Hankel matrix, H rs(‘c—l) e R X s,

is formed using the MPs Y (1) of a physical structure

Y(7) Y(z+1)... Y(t+s-1)

H (t-1) = Y(T+1) Y(T+2).. 1)

Y(t+r-1) YT +r+s-1)
Nonsingular matrices U and V, and diagonal matrix S can be obtained by

performing the singular value decomposition to H_(0),
T
H, (0) = UxSxV (72)

If S contains n nonzero singular values, and the structure has m inputs and g

) X
outputs, then the matrices U, § and V can be truncated to U1 € Equ n,

n X mXs
" and V1 e R , SO that

51691
T
Hrs(O) = U1><Sl><V1 } (73)

Defining Eq and E, to be
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E,=[1,0,.0] (74)
Epp = [Ly O - 0, (75)

where Oq =0e R 7 and 0, =0¢€ mme, the n order identified system has

the following discrete state space matrices

-1/2,T -1/2
A,y =S TUH, ()V,S] (76)
1/2,,T
B, =S, ViE,_ (77)
T, J1/2
Cia = E U8 (78)

Thus, the identified structure can be described by the discrete equations
x(k+1) = Ax(k) + Bu(k) (79)
y(k) = Cx(k). (80)
Note that the proposed global damage detection method has been developed
using the continuous state space representation of the structure. Additionally, it
should be recalled that the state space representation of any system is not unique.
Therefore, it is required to transform the identified state space representation into the
physical coordinates of the structure. A method to achieve this linear transformation

will be proposed.

C. FEM OF A L ABORATORY BRIDGE-LIKE STRUCTURE

A truss structure with 18-DOF was setup at the University of Missouri-Rolla
Intelligent System Center Health Monitoring Laboratory for damage detection

experimentation. A diagram of the structural system is shown in Figure 5. Structural
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elements 1 thru 14 are aluminum rods, while the structural elements 15 thru 17
consist of a stainless steel bolt (radius = 0.125 in), surrounded by an aluminum
cylinder (radius = 0.125 in). For modeling the structural stiffness, these structural
elements are considered to be stainless steel rods, with radius = 0.25 in. Some

physical properties of the structural elements are summarized in Table II.

5 l7/5 \4

Proof Mass Actuator

Figure 5. Truss structure used for damage detection experimentation

Table II: Physical properties of the structural elements

Physical Property Aluminum Stainless Steel
Element Element
Cross Sectional Area (ir?) | 1964x10 ° | 1964x10 °
Young’s Modulus (psi) 10.2 x 100 30% 10°
Length (in) 14 4.5
Density(# sec%/in) 2459%10 "
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The mass of the bolts, aluminum cylinders and actuator were determined
using a mass scale, while the mass of the aluminum rods were determined using the

relationship M = pAL. The mass information is summarized in Table IIl. The
A.E. - A.L

) ] i P;AL;
stiffness and mass constants, K = —Il:—l and m = —I—EI———l, for all the structural

i
elements are provided in Table IV.

Table III: Mass of the structural components

ngrr;l;gg:rll ¢ mass (# sec2/in)
Aluminum Cylinder 299.7x10 °
Stainless Steel Bolts 2259%107°
Proof Mass Actuator 1147.6x 10
Aluminum Rods 676.6 x 10~

Table IV: Stiffness and mass constants of the structural elements

. A.E. , p:A.L.
Structural S PP R 2,
Element k = Li #in) | m = 3 (# sec”/in)
1-14 143.1 x 10° 3383 %10 °
15-17 131%x10° 262.8 X 10°

The proof mass actuator consists of a mass attached to a base which contains

piezoelectric material. So, the applied force can be controlled by the applied voltage
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to the actuators terminals. In order to measure the response of the structure, 6
accelerometers were placed at different DOF: dx;, dy,, dy;, dys, dy; and dxg, where x
and y represent the axis in which direction the sensor has been placed, and the
number in the subscript represents the structural node at which the sensor has been
placed. Note that the mass of the actuator is very significant when compared to the
mass of the structural elements; in fact, it adds more mass to the structure than any
structural element. Therefore, the mass of the actuator must be considered in the
FEM; this can be accomplish by modeling the structural mass using the lumped mass
method. The nodes to which the structural elements are connected, as well as the

angles between the structural elements and the global coordinate axis are provided in

Table V.

Table V: Structural elements connections and angles with axis
Structural Connected to 0 0 0

Element Nodes X; Y, z;

1 1,2 60 30 90

2 2,3 0 90 90

3 34 120 -30 90

4 4,5 0 90 90

5 1,5 0 90 90

6 2,6 120 -30 90

7 35 60 30 90

8 6,7 60 30 90

9 7,8 0 90 90

10 8,9 120 -30 90




Table V: Structural elements connections and angles with axis

Structural Connected to 0 6 0

Element Nodes X; Y; z;
11 9,10 0 90 90
12 6,10 0 90 90
13 7,10 120 -30 90
14 8,10 60 30 90
15 2,7 90 90 180
16 38 90 90 180
17 5,10 90 90 180
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Using Equation (48), the contribution of the structural elements to the global

stiffness matrix are

0

K

2,4,5,9,11,12 _

0 0 O

0 0 O

k

i

100-100
000000
000000
100100
000000

000000

025 0433 0 -0.25 -0433 0
0433 0.75 0-0.433 -0.75
1,7,8,14 _ il 0
| -025 —04330 025 0433
-0.433 -0.75 0 0433 0.75

0

===

8D

(82)
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025 -0.4330 -0.25 0433 0

~0.433 0.75 0 0433 -0.75 0

361013 _,il 0 0 0 0 0 0 83)
~025 0433 0 025 -04330

0433 -075 0-0.433 0.75 0

o 0 0 0 0 0

K

and

000000

000000

15,16,17=ki()0 1 00-1 . (84)
000000

000000

00-100 1

K

Note that there are several elements with the same stiffness contribution matrix, but
the difference lie on the row and column references. These references are determine
using Equation (48), together with angles provided in Table IV. The stiffness
contributions had been determined. Combining the contribution of the individual
structural elements by adding the elements which have the same references, and
eliminating the rows and columns corresponding to the restricted DOF, the global

stiffness matrix is found to be

K, K
k= |fut2

, (85)
Ky Ky

where
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(2146 0 0 -1431 0O O -358 619 0 |
0 2146 O 0 0 0 619 -107.3 0
0 0 13090 O 0 0 0 0 0
s[-1431 0 0. 2146 0 0 -358 -619 0
Ky =107 o 0 0 0 2146 0 -619-1073 0 |>(86)
0 0 0 0 0 13090 0 0 0
358 619 0 -358 -619 0 3576 O 0
619 -1073 0 -619 -1073 0 0 2146 O
0 0 0 0 0 0 0 0 1309.0
00 0 00 0 00 O
00 0 00 0 00 O
00-13100 0 00 O
¢[00 0 00 0 00 O
K»,=1000 0 00 0 00 O | 87
00 0 00-13100 O
00 0 00 0 00 O
00 0 00 0 00 O
00 0 00 0 00-131]
Ky =Ky (88)
and
K,, = K{q. (89)

The order of the DOF in the stiffness matrix is: [dx,, dy,, dz,, dx3, dys, dz3. dxs, dys,

dzs, dxz, dyy, dzy dxg, dys, dzg dxjp dyjo dzol-

In order to model the structural mass, the lumped mass method was used

because its flexibility for considering the effect of the proof mass actuator. The

expression for the global mass matrix can be obtained observing Figure 5. The mass

at the nodes 2,3,7 and 8 are the same: 3/2 the mass of an aluminum rod plus 1/2 the

mass of the stainless steel bolt plus 1/2 the mass of the aluminum cylinder. This
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mass will be used for the three DOF at each node; i.e., dx;, dy; dz;. The mass at node
10 is two times the mass of an aluminum rod plus 1/2 the mass of the stainless steel
bolt plus 1/2 the mass of the aluminum cylinder. Finally, the mass at node 5 is equal
to the mass at node plus the mass of the actuator. Therefore, the diagonal of the

global lumped mass matrix is

(12777@ 11111 1])T

(27636@[ ])T
diag(M) = 10°° PELL , (90)

(12777® 11111 1])T

(1616.0® [1 1 1])T |

where the operator m ® n represents m Kronecker product with nl,
Note that both global stiffness and mass matrices have been determined.
Therefore, the natural frequencies of the structure can be determined using the

reviewed procedure in Section III. Using the eigenvalues of the matrix

O1gx18 118
A= ©1)

-1
-M K 01818

for determining the structural natural frequencies, it was obtained that the natural
frequencies are: 0, 0, 0, 778.21, 931.88, 1069.33, 1095.38, 1650.78, 1833.05,
2255.70, 2298.51, 2422.57, 2593.86, 2726.37, 2825.49, 5704.50, 7207.39, 7207.39
Hz. Note that, when the eigenvalues are determined using the relationship in

Equation (54), the units are rad/s; in order to get the natural frequencies in Hz, the

1. Consider the following example: a; , 1 ® [1 1 ... 1]1 T [a a ... a]l xq'
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natural frequencies in rad/s are divided by 2m. A swept sine test was performed on
the structure to verify the obtained natural frequencies. The obtained frequency
response is presented in APPENDIX B, where the frequency response captured by
the six accelerometers are presented. As it can be seen from these plots, there are
certain peaks in the magnitude which certainly represent natural frequencies. The
two peaks which better indicate the presence of natural frequencies are befter
observed in the frequency response captured by the sensors at the DOF 2-X and 7-Y.
These two natural frequencies correspond to 176.7 and 237.3 Hz. The swept sine test
indicates the presence of at least two modes in the range of 170 and 245 Hz, while
the obtained model predicted the first none-zero frequency to occur at 778.21 Hz.
The three zero natural frequencies are related to a rigid body behavior.

From the obtained results, a significant discrepancy is found between the
natural frequencies predicted by the FEM and the experimental natural frequencies.
Using the lumped mass method to model the global structural mass introduces a
certain level of inaccuracy. The lumped mass method was used to include the effect
of ‘the proof mass actuator. The need to include the actuator may be avoided if a
shaker is used to excite the structure, and the shaker is attached to the structure
through a stinger. The stinger will isolate the shaker from the structure, minimizing
the extra load added to the structure. Another possible factor to such a large
discrepancy may have been that the actual structural element differs from the bar
model used by the applied finite element method; probably, in the actual system the

structural elements allow some kind of bending, resulting in unmodeled dynamics.
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The bar model used by the finite element method only expands and contract along its
axis.

Due to the large discrepancy between the obtained model and the
experimental results, this model could not be used for damage detection purpose.
Considering the swept sine frequency response, as shown in APPENDIX B, for
determining a state space representation is almost impossible, due to the fact that
many peaks are present which can not be classified as natural frequencies or not.
Given these difficulties with the structure at the laboratory, the damage detection

method proposed in this thesis was applied to a simulated structure.
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IV. DAMAGE DETECTION USING STATE SPACE MODELS

The damping plays an important role in bridge-like structures. Therefore, a
global damage detection and classification method for these kind of structures should
address the possible reduction of the structural element damping factors. A global
damage detection method in the state space domain is introduced, it addresses both
the reduction in damping factor as well as the reduction in stiffness of the structural
elements. The proposed algorithm assumes the mass. of the structural elements do
not change due to the damage. Note this is a feasible assumption for the bridge-like
structures, whose structural elements are big and heavy. The proposed global
damage detection algorithm (GDDA) is based on the physical coordinate state space
representation of the structure. In this particular state space representation, the state
variables represent the displacement and the velocity of the structural degrees-of-
freedom (DOF).

The proposed damage detection method requires the structural models in the
physical coordinate state space representation, hence a transformation matrix is
developed for converting any arbitrary state space representation into the physical
coordinate' system. The proposed linear transformation method is demonstrated for
two and three-DOF structures. From these results, the procedure for a general n-
DOF structure is also developed. In order to derive mathematical models of the
structures from experimental data, the Eigensystem Realization Algorithm (ERA) has
been utilized. This algorithm requires the Markov parameters of the structural
response; these may be determined using a feedforward neural network architecture.

This identified discrete time model has to be converted into the continuous time
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domain before it can be converted to the physical coordinate system and used for

damage detection purposes.

A. DAMAGE DETECTION USING STATE VARIABLE MODELS

The structural dynamics for an n degrees-of-freedom (DOF) system can be
represented by the ordinary differential equation of motion

M{+Dg+Kg = f(t) (92)

where M = mass matrix, M € R X " D= damping matrix, D € R . K = stiffness

matrix, K € R , q(t) = displacement of the n DOF and f(¢) = external force vector.

Defining x; = ¢, and x, = ¢, Equation (92) can be expressed in the state space

representation

% 0 I ||¥|, |0 .
= » » + _1 fex=Ax+Bf. 93)
Xy -M 'K -M "D|{*p M

The overall structural system matrices M, D and K are the result of the contribution of

each structural element; this can be expressed as

M= Y M, (94)
i=1

. € ;

p= S D (95)
i=1

and

€ R

K= Y K, (96)
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] j i 3 .
where e is the number of structural elements, and M ! , D and K ' are the respective

contribution of the i structural element to the overall system mass, damping and stiffness

matrices. The matrices M i , Di and K i can be determined from the finite element model
(FEM). For bridge-like structures, the damage affects mainly the stiffness and the
damping of the structural members, but not their mass. Therefore, it will be assumed that
the mass matrix M does not change due to faults in the structure. Once a structural

element has been damaged, its stiffness and/or damping contribution is reduced by a

certain amount referred as the reduction factor which can be expressed as

e . e .
D,=D+ Y aD = ¥ (1+a)D' 97)
i=1 i=1
and
e ; e i
K;=K+ Y bK = ¥ (1+b)K, (98)
i=1 i=1

where the subscript d corresponds to the damaged structure. The objective of the GDDA

is to determine the respective damping and stiffness reduction factors, a; and b i

The state space representation for a damaged structure is

_ 0 I .
X X
= 18 P A+ Llre o9
i |-MT Y (1+b)K -MT Y (1+a)D'||x,| |uy
i=1 i=1
©x;=Ax,+B,f. (100)
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For a particular structural system, matrices A and A ; must be determined using a system

identification technique such as the ERA. Subtracting matrix A from matrix A 4

A,-A = 0 0 101
d— "~ 1~ _1~1" (101)
~-M 'K -M D

The matrix M is known from the FEM for the healthy structure, therefore, the matrices K

and D can be extracted using the following equations respectively

(102)

[

TR
S
=

R, ., = (MM HE

D = (—M)(-M’l)b (103)

nxn —

1l

[ S B
Q
»)

Equations (102) and (103), can be used to determine the reduction factors a; and bi'

Expanding Equation (102)

e

k=bk +b K+ .. +b K" (104)

Equating element by element in Equation (104) and re-arranging in a matrix-vector

- equation,
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[ 1 2 e‘
-1 |K1 K- Ky
K11
see 1 2 e
kln Kln Kln v K].n
- 1 2 e |[]
Kyp| Ky Ky - K[| 1
b ~ —~
[ R | o P2 (105)
R 2 e ll...
on| (K, K . Ky
b
. L €]
nl 1 2 €
Knl Knl . Knl
k v
| nn 1 2 e '
Ko K - Ko

where the subscripts ij refer to the element (i,j) of the matrix. Note that both matrices X
and k will be known. After eliminating the zero-rows of K , the resultant matrix is
represented as :I? . The corresponding elements of k , which also be equal to zero, are also

removed; the resultant vector is represented as k. The stiffness reduction factors, I;, can

be determined by

S
1}
IN)
—te
1

(106)

T

where Z{\ represents the pseudo-inverse of :I? A dual development can be done for

determining the damping reduction factors 2, so that
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I 1 2 e-
= ] Dyy Dyy - Dyg
11
PP 1 2 e
bln Dln Dln Dln -
- 1 2 e
Dy D21 D21 D21 a1
) N 2 o |2l s d = DD (107)
D 1 ¢
2’7, D2n D2n can D2n
a
L | €]
D
nl 12 €
Dn1 Dn1 Dn1
D
L 1y Dl D2 De
| nn T nn 't T nnj

After eliminating the zero-rows of D, the resultant matrix is represented as :5 The

corresponding elements of d , which also be equal to zero, are also removed; the resultant

vector is represented as c:l The stiffness reduction factors, &, can be determined by

(108)

2
a =

lb)
1.&,1

Each location in the reduction factor vectors, & and b , corresponds to a
particular structural element. Therefore, once the reduction factor vectors have been
determined using Equations (106) and (108), the percentage of stiffness and damping
reduction for each structural element has been estimated. So that, both the location
and severity of the damage are estimated in only one step, contrary to other GDDA,
such as the Best Achievable Eigenvector (BAE), in which the possible damage
locations are identified first, and then the damage assessment is estimated following a

different procedure. Another advantage of the proposed GDDA over the BAE is in
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case of multiple damages. The proposed algorithm provides for determining the
location and severity of the damage in only one step even when there are multiple
damages; while the BAE proposes an iterative process for estimating the different
levels of damage.

The proposed algorithm determines the location of the damages and their
severity by solving a set of algebraic equations obtained from the state space models of
the healthy and damaged structure. Note that the state space representation for the
damaged structure is estimated by a system identification method. Certain level of
uncertainty is added by the system identification procedure. This uncertainty needs
to be considered when interpreting the estimated reduction factors. A small
percentage of reduction may result from the deviation of the identified structure with

respect to the actual structure.

B. TRANSFORMATION INTO THE PHYSICAL COORDINATE SYSTEM

The proposed damage detection method requires the structural models in the
physical coordinate state space representation; in which the first and second half of
the state vector, respectively correspond to the displacement and velocity of the
structural DOF. Therefore, it is required to linearly transform the identified state
space representation into the physical coordinate state space representation of the
structure. Note that the identified state space representation contains an arbitrary set
of states. Before transforming the identified state space representation it must be in
the continuous time domain.

Consider the identified continuous state space representation for an n-DOF

damaged structure to have the following state space matrices A; and B, ,

id id



a1, v %an %n+)
A a(n,l) a(n,n) a(n,n+1)
did ~
An+1,1) " Yn+1n) Yn+1n+1)
| 2@enl) 0 %@rn) 4Qun+d)

and

b(l,l) b(l,n)
Byig =
ban1y - Pann
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4(1,2n)
a
(n,2n) , (109)
An+1,2n)
%2n,2n) |
(110)

Note that the elements of the matrices A d and B d have been denoted without the
id id

. NRTI . . th
subscript d for simplicity. Consider the hat on a subscript, G?, to denote the i column

. . th .
of the matrix G ; and the arrow on a subscript, G, , to denote the i row of the matrix G.

i

Using these notations the matrices A d
id

la, A, a, A,
Agig = [ did. " “did, “did . did

n+1

and

and B ; can be expressed as
id

= " (111)
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Bdida
1
Bdid= N (112)
Bdid__,
L 2nj

The objective of the linear transformation is to bring the arbitrary matrices given in

Equations (111) and (112) into the physical coordinate system,

i

e, 0 Lo { 0 }f@ = A B, f, (113)
. -1 -1 o *a = Aap*atPayl

where x 1= displacement of the DOF for the damaged structure and x dr= velocity of the

DOF for the damaged structure. Consider the state space matrix A dph to be partitioned

as

nn n

= : (114)

Al

22

where On ,, Tepresents a zero-matrix with dimensions n X n, and ,, Tepresents an identity

matrix of dimensions n X n .

The required linear transformation should satisfy the following set of equations,
A, =T'la, T (115)
dph ~ did
and

-1
By =T By, (116)

ph
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where T is the transformation matrix. Equating element by element, Equations (115) and
(116) provide enough algebraic equations to solve for the 6n2 unknowns, 4n2 unknowns

. . . 2 . .
in the transformation matrix T and 2rn"~ unknowns in the state space matrix A, Iz
P

Considering that the structural mass is not affected by the structural damage, the matrix

B L is known from the FEM to be

dp

B, =%
dph ~ M—l’

(117)

From Equation (116) half of the matrix T elements (2n2 unknowns) can be determined.

The rest of the unknowns, 4n2, can be determined by solving the algebraic equations
obtained using Equation (115).
Consider the linear transformation for a 2-DOF structure, for which A dph’

A, ,B, , M_1 and T, are defined to be
dig® “dig

0 0 1 0
0 0 0 1
A = |a a a a , (118)
dph dphyy “dphyy dphyy dphy,
a a a a
i phyy “Ophyy “dphyy 9phy|
a11 %12 %13 %14
a a a a
A, = 21 922 923 %24/ (119)
id lagy asy azz asz
%41 %42 %43 Y44




-1 my, m
YL L Vs V)
ma1 Moo

and

Iay thn I4q L
T = |21 722723 2a|

For a 2-DOF Equation (116) comes to be

11 112 113 t14l] 0
th1 tan 123 tps|| O
131 I3 133 34

STRZY)
by by

byy b3y

mi11 mi12

Mmi~, mi
141 T4 a3 tag| ™12 22

041 Py

-1

mi11 mi12

mi21 mi22

11 112 813 Y14

I31 I35 133 134
741 142 143 P44

0
0

by b1p

by by,

bsy b3y

D41 by

Expanding Equation (123), and equating element by element

62

(120)

(121)

(122)

(123)
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mipy miy ta| [P
miyy mipy tal  |P12
miyy miyg tal [P

miyy Miny fa| _ |P2a| (124)
miyy miy ta| P31
mijy miy tyl  |b32
miyy miy||tg3| by
i miyy mi22— _t44_ _b42_

In Equation (124) the elements which are equal to zero have been left in blank. Note that

Equation (124) contains four decoupled set of equations which can be solved

independently:
fa| _ |™11 21| |Pu (125)
f1a ™2 2P
_t | —m m | —b 1
23| _ ™11 ™Ma1l|%21 (126)
124 |12 M) |P2))
faa _ ™11 ™21 (P31 (127)
tyl  |M12 Mol |b32

and

t m,, m b
3| _ |™11 ™21 |ba1| (128)
taa|  |M12 M2l |Pa2

The Equations (125) to (128) can be expressed as



@3 = T be.1) ’ (129)
fe) b2

where g = [1,2,3,4]. Note that using Equation (129), the last 2 columns of the
transformation matrix T are determined. In order to determine the first two columns of

the transformation matrix 7', Equation (115) must be expanded. Equation (115) can be

expressed as
TAdph = AdidT; (130)

and for a 2-DOF structure

ittt OO 10

0 0 0 1

21ty - (131)
h h h h

131 I3y I33 I3y PR3y Phzp Phyy Phyy

a

a a a
741 42 143 Tag| | Pha1 “Phap PRy PRy

r - )
211 %12 %13 %14(|%11 12 Y13 Y14
a a a a t t t t

_ %21 922 923 924 |%21 122 123 T24 (132)
A31 @3y G33 A3yl |l3] I35 133 3y

941 %42 %43 %44 |"a1 42 143 T44]
Expanding Equations (131) and (132), and equating element by element, the following

equation is obtained
Pii Praf 1| _ {0} | (133)
Py1 Py |72

where
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—l3
—l33

_ |74
12 0

o o ©

22 7

0
0 00-ty,
0

0 00-ty,
00 0
00 0
00 0
00 0

13
—i73
—I33
43

Py = Ig,

00t 0001, 0
000 1,00 0 1,
00y, 0 001y, 0
000 1,00 0 1y
00, 0 001y, 0
00 0 £,,00 0 15
001, 0007, 0
000 1,300 0 1,y

0 00
~t14 00
00
00

—l3y
_444
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(134)

(135)

(136)

(137)
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T
vy = [fu 12 121 122 131 32 11 ’42] ’ (138)

T
v = |4 a a a a a a a 139
2 [dphm phyy “Aphsy “dphyy “dphyy “dphyy “dphy, dPh44} (139)

and
= |V v , 4
V3 [31 32:] (140)
where
v, = { dia,’3 Adia, T Adia, T3 Ad,-dfa} (141)
1 1 1 2 2
and
vy = [ dia, 3 Adia, T Adia, T3 AdidaTZ{l. (142)
2 3 3 4 4

Using the introduced notation, Equations (134) and (135) can be expressed as

Agia. %41 A5 %1 4y %41 Agiy 041
0,1 Ag, 04, A
1

4,1

-

did. 04,1 AdidA 04,1 Adid
2 3 4]8%x 8

and

~T4 043 -T5 04504 4
P = . (144)
12
04

’

1 T3 043 -T5 04 5 Sx g

The matrices Py, , Py, and P,, can be expressed in terms of the Kronecker product1 as
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- -T-T
A ®I
didA 2
b 1 -t
B ar
A ®1I
L didﬁ 2_
Pll =1 - s (145)
A ®I ’
didA 2
L. 3 -
M 1T
A ®1
didA 2
__ 4 N =

Py = (146)

and

911 912 wdR = 11712713

921 922|9 %2 21 722 7237 x 3

1. Consider the matrices Q = . The

Kronecker product Q ® R is defined to be

911711 911712 911713 912711 912712 912713

O®R = R ak _ 91721 911722 911723 912721 912722 912723

91R apR|, o 921711 921712 921713 922711 922712 922713

921721 921722 921723 922721 922722 922723



T
[T§ ®1,]

22 7 ()T
8,2

T
[T,®1,]

From Equation (133), the following set of equations are obtained
Pyyvi+Pppvy =0
Pyivi+Pyyvy = vs.

Using Equations (148) and (149), 121 is find to be

-1 -1 -1
Vi = =P PPy =P Prp) v
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(147)

(148)

(149)

(150)

Once the vector vy has been determined using Equation (150), all the elements of the

transformation matrix T are known. The last two columns of the transformation matrix T

are determined using Equation (129); and the first two columns are determined using

Equation (150). Knowing the transformation matrix 7, the physical coordinate state

space matrix A;  can be determined using Equation (115).
ph

In order to generalize for the case of an n-DOF structure, let consider the case

of a 3-DOF; so that the pattern involved in the linear transformation can be observed

from the cases of 2 and 3-DOF. For a 3-DOF structure the matrices A dph’ A d. >

Bd , M_1 and T are define to be
id

id
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0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

— a a a a a a
Adph_ dph41 dph42 dph43 dph44 dPh45 dph46 , (151)

a a a a a a
dphs) “dphs, ~dphsy “dphs, ~dphss dphsg

a a a a a a
“dphg, “dphgy “dphgy “dphg, “dphgs “dphgg

211 %12 413 %14 415 %16
a1 422 923 %94 %25 %26
A = |%31 932 933 934 935 736 (152)
a41 %42 %43 944 %45 %46
dsy 953 953 454 55 956
Z61 %62 %63 %64 Y65 Y66

by b12 b13
by by2 b3
B, = 231 lb’sz lb’33 ’ 153
41 542 43
bsy bs; bss
P61 b2 P3|

-1 . ) .
. miq1 Mp M3 miyq mijy miqq
M~ = |myy my, mys| = |miny min, miyg (154)

m31 M3z ™33 mizy Mmizy Miss



Expanding Equation (116) for a 3-DOF structure

mf2tistialistiell 0 o o
b1l inluisiyl| 0 0 0
131 133 133 T34 135 136
P41 Tap P43 P44 145 Uae
's1 tsp 153 154 's5 Isg
61 62 T63 “64 Y65 Y66

111 112 113 114 ty5 Hie
21 122 123 T4 t95 o

P41 P42 143 Ta4 45 146
ts5) 5y 53 I54 55 156

131 139 33 134 35 I3g

%61 “62 '63 64 Y65 l66)

0 0 0
miyy mij, mijq

mi21 mi22 mi23

_mi:,,1 mi32 mi33_

b3
b,
b

11 b1
b,
b

[\

2

Y—
[\
L2

31 732

41 P4 by3

o~ o> o> o

bsy b5y bs3

33|

561 bea e
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(155)

(156)

Expanding Equation (156), and equating element by element also leads to an equation that

contains a set of decoupled equations, which are

miyy miyy mizy) (2l |byy
miy, miyy migy)itysl = |byy
miyq miyy mizgl\tosl  |byy
miy, Miny Mizyl\tysl = |byy
miyy miy; mig|ital |y
miy, miyy migy||tas| = |bsy

(157)

(158)

(159)
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miyy mipy mizgy\ (e |y
mijy Miny Mizs||lgs| = b42 , (160)
miyy mipy mizglllel  |bys
miyy miy mig||tssl |bsy
mi12 mi22 mi32 tss| = b52 (161)
miy3 miyy miss)|tscl  |bss
and
miyy miyy miz|lteal  |bgy
mi12 mi22 mi:,,2 tes| = b62 (162)
mi 5 Miyy miza|leel  |bg3
The Equations (157) to (162) can all be solved as
fe) . by
o) =M 1Peal (163)
!(2.6) b(g3)

where g = [1,2,...,6]. Note that using Equation (163) the last 3 columns of the
transformation matrix T are determined. In order to determine the first 3 columns of the

transformation matrix T, Equation (115) must be expanded. Equation (115) can be

expressed as Equation (130); and for a 3-DOF this comes to be



where

t3) 133 134 35 136
Pap 143 T44 145 Y46
t5) 53 154 155 156
62 63 Tea tes Peg| | PP Phe2

19 113 T14 115 16| O 0
Iy 193 Ia4 195 Ing

0 0
0 0
“phyy “phyy

a a
phsy “phs,

211 %12 %13 %14 %15 %16
431 422 423 924 935 26
3] 43 33 434 435 93
241 %42 243 %44 %45 Y46
ds51 953 G53 54 955 954

%61 %62 %63 %64 %65 Y66

Equation (133), where

0 1 0 0
0 0 1 0
0 0 0 1

“phys “phyy Tphys Cphyg

a a a a
Phss “phsy “phss “phsg

a a a a
Phey “Phes “Phgs “Phgg

11 12 113 Y14 115 Y16
th1 122 123 P24 Y25 126
'31 732 133 134 135 T36|
T41 P42 143 P44 145 Y46
Is1 Is2 53 54 I55 156

61 "62 '63 164 Y65 66|

- |P., P
P4 [111 112]

P = 1%,1 Ai, 06, 2 Aiag 06,2 Aid, 06, 1

Aidi 06,2 Aidi 06, 2 Aidé 06,1 06,1

06,1 96, 1 Aidi 06,2 Aidi 062 4ig

3]

72

(164)

(165)

Expanding Equations (164) and (165), and equating element by element also leads to

(166)

(167)
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12 7

V1 = [tn t1p 3 Tag 1ap 123 131 T3 133 T4y Yan 143 P51 152 53 T61 Y62 ’63]

and

where

Aid;1 06,2 Aidg 0g 2 Aidg 06 1 06, 1

06 1 Aida U Aidg 06, 2 Aidé 0¢,11;

6.1 06,1 Aida 06,2 Aid§ 06 2 Ajg

8
~T; Og,5 ~T5 Og 5 ~T; 06,4 0, 1
Os,1 ~T; 06,5 ~T5 0 5 —T: O 4
0g

>

2 ~T; 0,5 =Tz Og 5 T2 0 5

Py = Iig,

O3 3 t1413 03 3 1513 05 3 1615
03 3 tal3 O3 3 tp5l3 03 3 Iy6/3
O3 3 13413 03 3 t35/3 03 3 I3¢/3
03 3 14503 O3 3 14613

05 3 ts4l3 O3 3 15513 O3 3 I56/5

03 3 T44l3

03,3 2643 03 3 fg513 03 3 %6613

T
A A
Vy = dph, “dph, dph,
4 5 6

T
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(168)

(169)

(170)

(171)

T
(172)

(173)

(174)
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vy = I:Adid_,Tzi Adia,Ts Adia,Ts Adia, "5 Adia, T3 Adidfa] . ar)
1 1 1 1 2 2 2
A, T.A, T.A, T, T.A, T.A, T,
vy = |"did,” 4 “did,” 5 "did, 6 Adia, 3 Ydia, 5 Aaia, T4 (176)
2 3 3 3 4 4 4
and
V3, = [Adid,Ti Adid,Tﬁ AdidaTé AdidgT& AdidgTS AdidgTé]- (177)
5 5 5

The matrices Py, Py, and P,, canbe expressed in terms of the Kronecker product as

[~ 0T

AdidA®I3

B 2 -

[ T

AdidA®I3
3

P, = o (178)
Ay, ®I
i T
Ay, ®I
L 5

i T
Adid8®l3
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P, = —T§® (179)

and

[ o 1T
18,3

T
[T21®I3]

T

018 3

T
[T§®I3]

T
0183

T
(T ¢ ®15]
After assembling these matrices, the vector v; can be determined using Equation (150).

Once the vector v, has been determined using Equation (150), all the elements of the

transformation matrix 7 are known. The last three columns of the transformation matrix
T are determined using Equation (129); and the first three columns are determined using
Equation (150). Knowing the transformation matrix T, the physical coordinate state

space matrix A ; , can be determined using Equation (115).
p

The cases of 2 and 3-DOF have been considered. Let us observe this cases, and
based on the obtained results generalize the linear transformation method for an n-

DOF. For an n-DOF structure, the matrices A; and B, are respectively defined as
id id
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in Equations (109) and (110); and the matrices M, [Adl’hzl Adphzz} and  are

define to be
-1 . .
_1 m(l,l) e v m(l,n) ml(l,l) K} ml(l,n)
Moo= . .. =1 ... .. .. (181)
m(n,l) m(n,n) mi(n’l) mi(n,n)
M )
dph__,
A 4 n+.l1
= 182
AdPh—>
and
i,y o fam faa+d o fazw
- | ‘e o Tam fened o w2 | (183)

tne1,) > fm+ 1) Sn 1n+ 1) Yn+ 1,20)

| fenl) 0 'enmy 'Qan+l) 0 f2n2m) |

Observing Equation (129) and (163), which respectively correspond to a 2 and 3-DOF

structure, it can be generalized that for an n-DOF

e+ oD
= | (184)

Hg2m) bl
where g = [1,2,...,2n]. Equation (184) allows to determine the last n columns of the

transformation matrix 7. Considering the presented cases for 2 and 3-DOF, it can be

generalized that Equation (115) leads to the equation



77

P.. P,V 0
11 Praf "] _ [ } (185)
Py Poollval 13

where P, is an identity matrix of order 2n?. From Equation (185) the following
equations are obtained
-1

vy = —P11P 15y (186)

-1 -1

From Equations (186) and (187), the vector v, is determined to be

-1 -1 -1
vy = =P P1p(Pyy =Py Prp) Vs (188)

In Equation (188), the matrices P11 , P12 and P22 , as well as the vectors Vi, Vs and V3,

depend on the number of degrees of freedom. Based on the cases of 2 and 3 -DOF, these

matrices and vectors can be generalized for the case of n-DOF. The vector v, contains

the elements of the first # columns of the transformation matrix T,

T
vl = [t(l,l) “ee t(l’n) t(2,1) .o t(z’n) e t(zn,l) soe t(2n’n)} - (189)
The vector v, contains the unknowns elements of the state space matrix A dph’
A A A T
Vy = |: ph—s “ph T Ph—>j| (190)
n+1 n+2 2n

Once Equation (116) has been solve using Equation (184), the vector V3 is a known

quantity,



2n

Adid_>
2n

T .
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(191)

2n

Based on the results obtained for the 2 and 3-DOF, the matrices P11 . P12 and P22 for an

n-DOF can be expressed in terms of the Kronecker product,

11 ~

[ 1T
Ay, ®I,
L 1

- T
Adi%@zn

T
44, . ® L]

- 1T

, (192)

2n2 x 2n2
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+2® [0, nﬂT (193)

T

0
2n2, n

T
T.®I
[2n ”] ]

T
b
2n ’ 1 2n2x2n2

(194)

2n2 x2n2

Once the vector v, has been determined using Equation (188) all the elements

of the transformation matrix 7 are known. The last n columns of the transformation

matrix T are determined using Equation (184); and the first three columns are

determined using Equation (188).

Knowing the transformation matrix T, the

physical coordinate state space matrix A ; can be determined using Equation (115).
ph

C. LIMITATION IMPOSED BY PROPOSED LINEAR TRANSFORMATION

The proposed linear transformation for getting any arbitrary state space

representation into the physical coordinates requires the state space matrix B to have
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rank equal to the number of DOF. This limits the application of the linear
transformation method to the cases in which there are as many actuators as DOF.
When a state space representation is linearly transform, it does not only affect
the state space matrices A 4 and B ; it also affects the state space matrix C 4 The
matrix C d is related to the measurements of the states,
Yg = Cdxd, (195)
where y is the vector of measurements. It was felt that using Equation (195), may lead to

overcoming the limitation imposed by the proposed linear transformation procedure. The

relationship between the arbitrary representation and the physical coordinate is given by

C =C, T. 196
dph did ( )

Assuming the displacement of the DOF could be measured, the matrix C g 18
ph

C - [In 0, n]. (197)

Expanding Equation (196) for a 3-DOF, and considering C ; i to be
p

c =]:1 0 ] 198
d = 13933 (198)

leads to the equation
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Ty ]
I,®C C
1 . 1
I, ® 3 T
6 a, 3 = €4 (199)
2 phs
i 3118 %36 phs
T. 3[18x1
| 6j36x1

Note that in Equation (199) all the elements of the transformation matrix are the
unknowns; i.e., there are 4n2 unknowns. Considering the base case scenario, in which all
the DOF are available for measurement, Equation (196) will provide 2n2 equations.

Therefore, considering the best measurement scenario, 2n2 extra equations are needed in
order to solve for all of the unknowns. The other two sources of equations are Equations
(115) and (116). If Equation (115) is to be expanded, the last n columns of the
transformation matrix 7 should be known in order to avoid the multiplication of two
unknowns. Therefore, the only remaining source of equations is Equation (116), which

may add up to 2np; equations; where p; is the number of inputs. Therefore, in order to

obtain the number of equations that were missing under the best measurement scenario

(which were 2n2 ), p; must be equal to n. This shows that, even when all DOF were

available for measurement, the required number of actuators remains n. So that, the
additional information obtained from Equation (196) does help to overcome the limitation
imposed by the proposed procedure for linearly transforming an arbitrary state

representation into the physical coordinates.
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V. APPLICATION OF THE SATE SPACE BASED GDDA

In this section, a 3-DOF system is used to illustrate step-by-step the proposed
global damage detection algorithm (GDDA). Additionally, the obtained results on a
simulated three-bar truss structure with 3-DOF are presented, providing the step-by-
step procedure for one damage case scenario. The three-bar truss structure was
simulated in order to get the structural response to a sequence of random inputs.
From the time-domain collected data the state space representation of the structure is
obtained applying several system identification methods. Estimating the state space
representation of the structure arises the need for using the proposed linear
transformation into the physical coordinate of the structure. For both systems, the

FEM model will be provided in order to apply the proposed GDDA.

A. Three-DOF System

Consider an undamaged spring-damper-mass 3-DOF system to be as shown in

Figure 6, and the damaged system as shown in Figure 7.

| ~
m=1 _\/vv\_ my=2 _\/y\/\_ ms=1
|

Q.
N
li
N
Q.
w
Il
[uay
(9}

Figure 6. Undamaged 3-DOF system
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—1
d2-‘—"2 d3 =0 . 5

Figure 7. Damaged 3-DOF system

The equation of motion for this 3-DOF system is determined to be

my 0 0 dy+d, -dy O ki+ky -k, O Uy
0 my O1G+| —dy dy+dy—dslg+| —ky ky+ky—kslq = |upy| (200)

Therefore, the matrices A and A ; of the respective state space representation for these

systems are:
000 01 0 0]
00 00 1 O
6 4 0-3 2 0
2 _3515 1 -1.75 0.75
0 3 30 15 -15
and
000 01 0 0]
00 00 1 0
A, =|0 0 00 0 202)
42 0-3 2 0
1 2515 1 —1.25 025
0 3 30 05 -05
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The eigenvalues, their damping and natural frequencies for the matrices A and A 4 are

provided in Tables VI and VII, respectively. The damage in the structure causes it to

behave differently than the healthy structure; Figure 8 shows the difference of the system

singular values.

Table VI: Eigenvalues of matrix A

Eigenvalues Damping Freq. (rad/sec)

-0.0922 % 0.6 0.152 0.607
-1£1.732 0.5 2
-2.033 £j2 0.713 2.852

Table VII: Eigenvalues of matrix A4

Eigenvalues Damping Freq. (rad/sec)

-0.102 £ j0.54 0.186 0.55
-0.418 +£;2.02 0.2025 2.062
-1.855 £j1.11 0.8585 2.16
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20

Singular values (db)

Healthy Structure — dashed

- . Damaged Structure — solid
—aof- -7~ -
—50 1
10~ 10° 10’

Frequency (rad/sec)

Figure 8. Singular values for 3-DOF structure

Observing the stiffness and damping parameters from Figures 6 and 7, and
using Equation (200), the matrices K, D, K, and D for the healthy and damaged

structure are determined to be

6 -4 0
K=|47-3 (203)
0-33
3 =2 0
D=2 35 -15|; (204)
0 -15 1.5
4 20
K;=125 -3 (205)
0 -3 3

and
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3 -2 0
D,=1-2 25 -05 (206)
0 -0.5 0.5

Substracting A from A ;, and determining K and D as respectively shown in Equations

(102) and (103),
_ -2 20
K=12 20 (207)
0 00
and
_ 00 O
D = 0-1 11|- (208)
01 -1

Using Equations (106) and (108), the following equations for calculating the damping and

stiffness reduction factors, a; and b; respectively, are determined to be

==
|

[\ &)
o o o

02 15([ay| = |-1 ’ (209)
00 -15
00 -15 1
0 0 1.5 -1

and
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2 4 0] 2]
0-40 Y, 2
0-4 0|1 2
04 3||by| = |-2f (210)
00 -3|{p 3 0
00-3 0
00 3] | 0
Using the pseudoinverse of the matrices, the following results are obtained,
b1 0 aq 0
by| = |-0.5| and |a,| = 0o |- (211)
by 0 a, —-0.667

From these results, it can be seen that both reduction factors b2 and as have been properly

identified. These values indicate a 50% reduction in the stiffness of the spring number 2,
which connects the 15 and 2™ masses, as well as a 66.7% reduction in the damping of the

damper number 3, which connects the 27d and 3™ masses. Note that both the location and

extent of the damages were determined at the same time.

B. Simulated Three-bar 3-DOF Structure

The three-bar 3-DOF structure shown in Figure 9 was simulated in order to get
the input-output data for the structure. The DOF are represented by the arrows,
which at the same time indicate the location for the actuators. The mass, stiffness
and damping parameters for the structure are given in Table VIII, where the values
for the healthy structure as well as for the different damage scenarios considered are

provided. The constants k; and 4, respectively, represent the stiffness and damping
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parameters for the i element of the structure, as numbered in Figure 9. Note that

the damage scenario 4 is the combination of the damage scenarios 1, 2 and 3.

DOF,
DOF,
60
1 2
X
=\/60 60

Figure 9. Simulated three-bar 3-DOF structure

Table VIII: Structural parameters for the three-bar 3 DOF structure

structure | My 53 | Ky | ky | k3 | dy | dy | dy
healthy 4 7 7 7 6 6 6
damage 1 4 245 7 7 6 1.5 6
damage 2 4 7 3.85 7 4.2 6 6
damage 3 4 7 7 3.15 6 6 3.75
damage 4 4 245 3.85 3.15 4.2 1.5 3.75

Two different procedure were used to perform the system identification for the

damage scenario 1. The first procedure was to use the ERA algorithm to estimate the
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state space representation for the structure based on the estimated Markov parameters
by a feedforward neural network. The second procedure was to use the System
Identification Toolbox of MATLAB to identify the state space representation of the
structure.

The nominal difference in the singular values of the system under the damage

scenario 1 is shown in Figure 10.

Singutar values (db)
0
0

Healthy Structure — dashed
Damaged Structure — sotid

-35

—40

—as .
107" °© 10’

Frequency (rad/sec)

Figure 10. Difference in singular values under damage scenario 1

Modeling the three-bar truss structure in Figure 9 using FEM, the lumped mass

matrix M, stiffness matrix K and damping matrix D are determine to be

0.5(m; +m,) 0 0
M = 0 0.5(m +m,) 0 (212)
0o . 0 O.S(m2 + m3)
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0.25(ky +ky) 0.433(k; —k,) -0.25k,
K = |0433(k; - k,) 0.75(k1 +k5) 0.433k, (213)

-0.25k, 0.433k,  0.25k, _ ky

and

0.25(d; +d,) 0433 (d{-d,) -025d,
D = |0433(d;-d,) 0.75(d; +d,) 0.433d, |. (214)
-0.254, 0.433d,  0.25d,+d,
It has been assumed that a damping parameter which allows to model the damping in the
same way the stiffness is modeled, is known for each structural element. Using Equation

(93), this model, and the structural parameters provided in Table VIII (damage scenario 1),

the respective state space matrices A and A g for the healthy and damaged structure are

determined to be

[ 0 0 0 1 0 0 |

0 0 0 0 1 0
A-] 0 0 O 0 0 1 15)

—0.875 0 04375 075 O 0375
0 -2.625 —07578 0 —225 —0.6495

0.4375 ~0.7578 ~2.1875 0.375 —0.6495 —1.875 |

and
[ 0 0 0 1 0 0 |

0 0 0 0 1 0

—0.5906 0.4926 0.4375 0.4688 -0.4871 0.0938
0.4926 -1.7719 -0.7578 —0.4871 —1.4062 -0.1624
| 0.4375 -0.7578 -2.1875 0.0938 -0.1624 —1.5938|
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Given that the structural mass does not change with damage, the state space matrix B is

the same for both healthy and damaged structure, i.e.,

0
0
01, 217)
0
0

0.

N

5—

The eigenvalues of matrices A and A ; are respectively described in Tables IX and X.

Table IX: Eigenvalues of matrix A, three-bar 3-DOF

Eigenvalues Damping Freq. (rad/sec)

-0.305 £j0.787 0.362 0.844
-0.75 £1.090 0.567 1.323
-1.382 £;1.147 0.770 1.760

Table X: Eigenvalues of matrix A, three-bar 3-DOF

Eigenvalues Damping Freq. (rad/sec)
-0.354 £ j0.896 0.368 0.964
-0.649 £j0.416 0.842 0.771
-0.731 £1.419 0.458 1.60
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Both healthy and damaged structures were simulated to get input-output data.
The simulations were performed using the physical coordinate state space
representation. The velocity of each DOF was measured as the structural response.
Only one DOF was excited at a time with a random signal. The sampling time used
in simulation was chosen considering the fastest eigenvalue of the structures; they
were choose to be slightly over 5 times faster. The sampling time in the simulation
of the healthy structure was T, = 0.5598 sec, and T, = 0.6298 sec for the damaged
structure. The state space representation of the structures were estimated using the
two mentioned system identification procedures. The system identification
procedures were used to determine 9 single-input single-output (SISO) systems,
which were combined and reduced to a 6th order state space representation.

The ERA algorithm was used to estimate the damaged structure state space
representation from thé estimated MPs. The MPs were estimated using a
feedforward neural network. In order to perform the structural diagnosis it was
assumed that the model for the healthy structure was known.

A feedforward neural network with 90 neurons at the input layer, 170 neurons
at the hidden layer and 1 neuron at the output layer was found to learn the structural
input-output relationship with an RMS error in the order of 10-4. Once the network
was trained for each SISO system, the weights were used to estimate the Markov
parameters of the system, which then were used by the ERA to estimate the state
space representation of the structure, as explained in Section III. The information

required to perform the linear transformation into the physical coordinates of the
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structure, as well as the structural diagnosis, is contained in the state space pair

matrices {A d. 7 B d } which for the damage scenario 1 were estimated to be
id id

-0.4665 0.9084 -0.2730 0.1004 -0.1112 —-0.0079
-0.9086 -0.0131 0.0136 —-0.2182 0.0044 0.0771
0.2734 0.0134 -0.0468 0.9451 -0.0242 —0.4684 (218)
id 0.0100 0.2181 -0.9438 -1.4473 —0.0202 0.0248
0.1118 0.0027 -0.0188 0.0283 -0.0110 —1.4593
—0.0096 -0.0771 04670 0.0192 1.4455 -1.5227]

and

-0.4655 0.1735 -0.1192
-0.0464 -0.0623 —-0.0299
g, = | 009005 -0.0068 0.0390 | (219)
id 0.1885 0.4745 -0.0143
0.0378 -0.0165 0.0120
| 0.0954 —0.0606 —0.4888

The difference in the singular values between the identified damaged structure
versus the nominal damaged structure is shown in Figure 11. The suggested procedure
to transform the arbitrary identified damaged structure into the physical coordinates
was used. The procedure involve in the linear transformation process is provided in
the Appendix A.

From the identified state space representation already transformed into the

physical coordinate, the matrices K d and D 4 are determined to be

2.3669 —2.0280 —1.8058
K, = 1-1.9455 7.1459 3.0160 (220)
-1.7547 3.1015 8.7988

and
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1.8725 1.9969 —0.3651
D, = 119789 5.7614 0.6997 |- (221)
-0.3415 0.6728 6.3954

Singular values (db)
0
i)

Nominal Damaged Structure — dashed
ldentified Damaged Structure — solid

—45 L
107" 10° 10’
Frequency (rad/sec)

Figure 11. Difference in singular values between nominal and identified damaged
structure using ERA for system identification

Using Equations (106) and (108), the equations for determining the damping

and stiffness reduction factors, a; and b ; respectively, are determined to be



and

Solving Equations (222) and (223), the following results are obtained

and

1.5 .5 0
2.5981 -2.5981 0
0 -15 0
2.5981 -2,5981 0

0 0
0 0
0 2.5981 0
0 6

(175 175 0

3.0311 -3.0311 0
0 -1750
3.0311 -3.0311 0
525 525 0
0 3.0311 0
0 -1750
0 30311 0
0o 175 7

45 45 0||ay =

0.0210
-0.7437
0.0018

-0.6479

-1.1275
1.9969
1.1349
1.9789
-3.2386
-1.8984
1.1585
-1.9253

-1.1046]

-1.331
—2.0280
—-0.0558
-1.9455

-0.0151
-0.0047
0.0704

| 0.0488 |

0.0090 | -

0.0047

-3.3541| -
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(222)

(223)

(224)

(225)
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From these results it can be seen that the 75% reduction on the damping parameter for the
structural element #2 is estimated to be a reduction of 74.37%, while the 65% reduction on
the stiffness parameter for the structural element #1 is estimated to be a reduction of
64.79%. Considering that the system identification procedure introduces uncertainty into
the damage detection, the other estimated reduction factors may be disregarded.
Considering the same damage scenario 1, as shown in Table VIII, the proposed
GDDA was repeated using the MATLAB System Identification Toolbox for
identification purpose. Once the obtained arbitrary state space representation was

transformed into the structural physical coordinates the following matrix A 4 . was
ph

obtained
[ 0 0 0 1 0 0o |
0 0 0 0 1 0

ph -0.5990 0.4760 0.4333 -0.4468 -0.4591 0.0840
0.5166 —1.7452 -0.7670 —0.4574 -1.3373 ~0.1563
| 0.4528 -0.7495 -2.1967 0.0858 -0.1591 —1.5620

Figure 12 shows the difference between the singular values for the identified-damaged
structure versus the nominal damaged structure.
From the matrix A, as shown in Equation (226), the matrices K d and D g are

determined to be

2.3959 —1.9040 —1.7333
K, = 1-2.0666 69809 3.0679 (227)
—~1.8112 2.9980 8.7869

and
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1.7872 1.8366 —0.3359
D, = |1.8296 5.3494 0.6252 |- (228)
~0.3432 0.6364 6.2480

Singular values (db)

Nomina! Structure — dashed

identified Structure — solid

-45 Il
107" 10°
Frequency (rad/sec)

10

Figure 12. Difference in singular values, nominal structure versus identified

Using Equations (106) and (108), the following equations for determining the

damping and stiffness reduction factors, g, and b; respectively, are determined to be
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1.5 15 0 -1.2128

2.5981 —2.5981 0 1.8366
0 -15 0 1.1641

2.5981 —2.5981 of | “1 1.8296

45 45 0|2 = |-3.6506 (229)
0 25981 0||q,l [-1.9729
0 -15 0 1.1568
0 25981 0 ~1.9617
0 1.5 6 -1.2520

and

175 175 0 ~1.1041

3.0311 -3.0311 0 ~1.9040
0 -175 0 0.0167

3.0311 -3.0311 0| |°1|  |-2.0666

525 525 0||by| = |-3.5191]- (230)
0 30311 O |p,| |0.0368
0 -175 0 ~0.0612
0 3.0311 0 -0.0331

|0 1.75 7] | 0.0369 |

Solving Equations (229) and (230)

-0.0524
a5l = |-0.7593 (231)
ay|  |-0.0188
and
1l [—o.615
by| = |-0.0024}- (232)
b 0.0059



99

From these results, it can be seen that the 75% reduction in the damping parameter for
structural element #2 is estimated to be 75.93% reduction, while the 65% reduction of the
stiffness parameter for the structural element #1 is estimated to be a reduction of 66.15%.
The other estimated reduction factors may be disregarded because the uncertainty
introduced by the system identification procedure.

The proposed GDDA was applied for the damage scenarios 2, 3 and 4 as
described in Table VIII; and the system identification was performed using the

MATLAB System Identification Toolbox. The obtained results are summarized in

Tables XI, XII and XIII.

Table XI: Obtained results on damage scenario 2

Reduction Nominal Estimated
Factor Reduction (%) | Reduction (%)
a, 30 34.06
a, 0 15.30
a, 0 11.41
b, 0 0.38
b, 45 45.87
by 0 0.37




Table XII: Obtained results on damage scenario 3

Reduction Nominal Estimated
Factor Reduction (%) Reduction (%)

a 0 29

ay 0 7.91
a, 37.5 40.22
b 1 0 0.43
b, 0 0.39
by 55 55.02

Table XIII: Obtained results on damage scenario 4

Reduction Nominal Estimated
Factor Reduction (%) Reduction (%)
a 30 33.69
a, 75 75.83
a, 37.5 38.28
b 1 65 65.59
b 5 45 45.06
b 3 55 54.90

100
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Considering the uncertainty added by the system identification any reduction
factor which is much less than an estimated reduction factor may be disregarded.
From the obtained results, it can be seen that the reduction in stiffness was always
properly identified, while the reduction in damping had a case, damage scenario 2, in
which two undamaged structural elements where classified as damaged elements. In
this case, only the damping parameter for the structural element number 1 was
varied, and it was estimated to be of 34.06%; even when the damping parameter for
the other two elements were not varied, the procedure reflected a reduction factor of
15.30% and 11.41% for the structural elements 2 and 3, respectively. Note that the
damage scenario 2 was included in damage scenario 4; when the damage scenario 4
was considered all damage extents were properly identified.

The errors obtained in estimating the damping reduction were in general, larger
that the errors obtained in estimating the stiffness reductions, which indicates that the

damping effect is more difficult to identify than the stiffness effect.
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VI. CONCLUSIONS AND FUTURE WORK

A global damage detection algorithm (GDDA) for bridge-like structures has
been proposed. This algorithm assumes the mass of the structural element does not
change when it is damaged, which is a reasonable assumptions for bridge-like
structures. The proposed algorithm provides for determining which structural
elements had undergone a reduction in the stiffness and/or damping parameters;
additionally, it determines the extension of the damége by estimating the reduction
factor for each stiffness and damping parameter.

A finite element model (FEM) of a test structure has been provided. The
natural frequencies computed from the obtained FEM do not match the obtained
experimental natural frequencies. A more accurate FEM should be obtained in order
to use it for damage detection purpose.

The proposed GDDA is based on the state space representation of the structure
in the physical coordinates. The estimated state space representation for the structure
using any system identification will correspond to an arbitrary set of states, but in
order to apply the proposed GDDA the state space representation must correspond to
the physical coordinate. The need arises for a linear transformation to transform the
identified arbitrary state space representation into the physical coordinate. A method
to perform this linear transformation has been proposed. The proposed procedure for
linearly transform any arbitrary state space representation into the physical
coordinate imposes the limitation that the number of actuators on the structure must

be equal to the number of degrees-of-freedom (DOF). How to overcome the
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limitation imposed by the proposed linear transformation should be further
investigated.

The proposed GDDA has been successfully applied on a 3-DOF mass-damper-
spring system as well as on a simulated three-bar-truss structure with 3-DOF. The
obtained results indicate the proposed GDDA constitutes a valuable method for the
damage detection in bridge-like structures. Considering that the proposed GDDA is

based on time domain data, it provides for real time damage detection.



APPENDIX A
EXAMPLE OF LINEAR TRANSFORMATION PROCEDURE
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The proposed procedure to obtain the linear transformation into the physical
coordinate will be shown step-by-step for a numerical example, which corresponds to the
three-bar 3-DOF structure considered in chapter V under the damage scenario #1.

Consider the following identified matrices for the damaged structure:

-0.4665 0.9084 -0.2730 0.1004 -0.1112 -0.0079
-0.9086 —0.0131 0.0136 -0.2182 0.0044 0.0771
0.2734 0.0134 -0.0468 0.9451 -0.0242 -0.4634
id 0.0100 0.2181 -0.9438 —1.4473 -0.0202 0.0248
0.1118 0.0027 -0.0188 0.0283 -0.0110 —1.4593
-0.0096 -0.0771 0.4670 0.0192 1.4455 -1.5227

(A3)

and

-0.4655 0.1735 -0.1192
-0.0464 —-0.0623 -0.0299
0.0905 -0.0068 0.0390 | (A4)
id 0.1885 0.4745 -0.0143
0.0378 -0.0165 0.0120
| 0.0954 -0.0606 —0.4388]

(=]
QL
]

Equations (A1) and (A2) can be expressed as
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!"A =
dig,
i
A
dig,
2
A, A, A, A, A, A Adid’
3
Ag. =[didA dig, “dig, “dig, Tdig, Tdig | = (AS5)
id 1 2 3 4 5 6 A,
id,
4
A
dig,
5
A
dig,
)
and
B B B B B B d
By =1"%, %, %4, %a, %a, %a,| - (A6)
id i 2 3 4 5 6
The mass matrix for the structure is
400
M= 1040 (AT)
004
Using equation (184) the following set equation are obtained:
fa.4 +|-0.4655]  |-18618
tasl =M [ 01735 = | 0.6939 |- (A3)
Zn -0.1192|  |-0.4768
PN
(2.4) T -0.0464 -0.1857
ts)| =M |-0.0623| = (-0.2493|, (A9)
_t 26 -0.0299 -0.1197




‘3.4 7| 0.0905 0.3622
tas)| = M |-0.0068| = |-0.0271}
6.6) 0.0390 0.1561
‘a4 7| 01885 0.7541
tas)| =M | 04745 = | 1.8980 |
a6 -0.0143 —0.0572
‘54 7| 0:0378 0.1514
ts5| =M |-0.0165| = |-0.0658
t(5,6) 0.0120 0.0478
and
“6.4) 7| 0:0954 0.3817
tes)| =M |-0.0606| = |-0.2424|-
t6.6) -0.4888 -1.9550

From equations (A4) to (A9) it is obtained that

_1.8618 0.6939 —0.4768
_0.1857 —0.2493 —0.1197

T.T. T.| = | 03622 -0.0271 0.1561
4 5 6

0.1514 -0.0658 0.0478

0.7541 1.8980 —0.0572|

| 0.3817 -0.2424 —1.9550]
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(A10)

(All)

(A12)

(A13)

(Al14)

The first 3 columns of the transformation matrix 7 remain to be determined;

for this purpose equation (188) will be used, where the partitioned matrices Py,

P, and P,, are respectively given by equations (192), (193) and (194), so that



where
P =
111
and
P =
112
P, =
and
Py, =
and V3 is

P..= |P P
11 I:lll 112}

- -

Aidi 06,2 Aidé 06 2 Aid§ 06 1 96, 1

06 1 Aidi 06 2 Aidi 06 2 Aid3 06, 1

06,1 96,1 Aidi 06, 2 Aid2 06,2 Aidé

Aida 06,2 Aidg ) Aid6 06,1 06, 1

06 1 Aida 0¢ 2 Aidg 0g 2 Aida 06, 1

06 1 06, 1 Aida 06 2 Aid3 06 2 Aidé

~T; 06,5 —T5 06,5 ~T¢ 06 4 0g 1

06,1 ~T; 06,5 Tz 06,5 ~T; Og 4

06,2 =T 96,5 Tz 06,5 ~T; O 3

0
0

150
0

3,3 F1413 03 3 #1573 05 5 24415
3,3 2513 03 3 1613
03 3 13413 03 3 13503 03 3 #3¢]3
0
0

03,3 f6413

3,3 tpal3

3,3 taal3 03 3 14513 03 3 14615
0
0

3,3 15413 03 3 15503 05 5 15514

3,3 Y6513 03, 3 Ze6!3)
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(A15)

(A16)

(A17)

(A18)

(A19)



0.5889
-0.5138
0.0807
1.5645
-1.0606
0.2989
0.0018
2.0966
0.7214

-2.7736
-0.1450
-0.7528
0.4854
2.7943
-0.1466
0.3102

~1.4858|

| 3.1316
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(A20)



From equation (188) v, can be determined,

12 ] )
13 0.1013
- ~0.5240
t ~0.3904
22 1.3644
I3 -1.5325
- 0.0808
) 0.1447
32 2.2647
I33 -1 -1, 1 0.9332
v 0 P11P1o(Pyy—P11P1p) V3 _o.1880!"
ty 0.3271
0.0268
T43 ~0.7186
ts) 0.4743
; 2.8454
52
. 0.0791
53 ~0.1772
’61 -0.0714]
73)
63

Therefore, the transformation matrix has been determined to be

_0.1013 -0.5240 -0.3904 -1.8618 0.6939 —0.4768—
1.3644 -1.5325 0.0808 —0.1857 -0.2493 -0.1197
T = | 01447 22647 09332 03622 0.0271 0.1561

—0.7186 0.4743 2.8454 0.1514 -0.0658 0.0478

~0.1889 0.3271 0.0268 0.7541 1.8980 —0.0572|

| 0.0791 -0.1772 -0.0714 0.3817 -0.2424 —1.9550]
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(A21)

(A22)

Now, the transformation matrix T is known; therefore, the physical coordinate state space



matrix A dph can be determined using equation (115),

Adph

-1
=T AdidT-—

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

-0.5917 0.5070 0.4515 -0.4681 -0.4992 0.0913
0.4864 —1.7865 —0.7540 0.4947 -1.4403 -0.1749

| 0.4387 —0.7754 -2.1997 0.0854 -0.1682 —1.5989)

111

. (A23)



APPENDIX B
SWEPT SINE FREQUENCY RESPONSES



Figure 13. Swept sine frequency response, sensor at node 2, X-direction
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Figure 14. Swept sine frequency response, sensor at node 2, Y-direction
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Sensor at node 3, y-direction
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Figure 15. Swept sine frequency response, sensor at node 3, Y-direction

Sensor at node 5, y-direction
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Figure 16. Swept sine frequency response, sensor at node 5, Y-direction

114



Sensor at node 7, y—direction
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Figure 17. Swept sine frequency response, sensor at node 7, Y-direction

Sensor at node 8, x—direction
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Figure 18. Swept Sine frequency response, sensor at node 8, X-direction
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